Introduction to Transportation Demand Analysis and Overview of Consumer Theory

Moshe Ben-Akiva

1.201 / 11.545 / ESD.210 Transportation Systems Analysis: Demand & Economics

Fall 2008

Part One: Introduction to Transportation Demand Analysis **Outline**

- I. Introduction to Transportation Demand Analysis
 - Choices
 - Complexity
 - Sample statistics
 - Roles of demand models
- II. Overview of Consumer Theory

Choices Impacting Transport Demand

- Decisions made by Organizations
 - Firm locates in Boston or Waltham
 - Firm invests in home offices, high speed connections
 - Developer builds in downtown or suburbs
- Decisions made by Individual/Households
 - Live in mixed use area in Boston or in residential suburb
 - Do not work or work (and where to work)
 - Own a car or a bike
 - Own an in-vehicle navigation system
 - Work Monday-Friday 9-5 or work evenings and weekends
 - Daily activity and travel choices: what, where, when, for how long, in what order, by which mode and route, using what telecommunications

Complexity of Transport Demand

- Valued as input to other activities (derived demand)
- Encompasses many interrelated decisions
 - Very long-term to very short-term
- Large number of distinct services differentiated by location and time
- Demographics & socioeconomic matter
- Sensitivity to service quality
- Supply and demand interact via congestion

Complexity and Variety \rightarrow wide assortment of models to analyze transportation users' behavior.

Mode Share Statistics

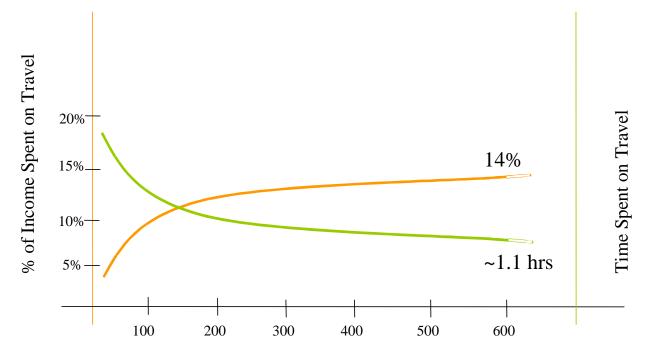
Transit Shares for Work Trips in Selected U.S. Cities

City	Year	Transit Mode Share (%)
Boston, MA	1990	10.64
	2000	9.03
Chicago, IL	1990	13.66
	2000	11.49
New York, NY	1990	26.57
	2000	24.90
Houston, TX	1990	3.78
	2000	3.28
Phoenix, AZ	1990	2.13
	2000	2.02

Source: US Census, 1990, 2000

Travel Expenditures

• The average generalized cost (money and time) per person in developed countries is very stable.



Motorization Rate (Cars/1000 Capita)

Source: Schäfer A., 1998, "The Global Demand for Motorized Mobility", Transportation Research A, 32(6): 455-477.

Transport Demand Elasticities

- Elasticity: % change in demand resulting from 1% change in an attribute
- Derived from demand models:

Work Trips (San Francisco)	Auto	Bus	Rail	
Price	-0.47	-0.58	-0.86	
In-vehicle time	-0.22	-0.60	-0.60	
Vacation Trips (U.S.)	Auto	Bus	Rail	Air
Price	-0.45	-0.69	-1.20	-0.38
Travel time	-0.39	-2.11	-1.58	-0.43

Source: Schäfer A., 1998, "The Global Demand for Motorized Mobility", Transportation Research A, 32(6): 455-477.

Value of Time

• The monetary value of a unit of time for a user.

Work Trips (San Francisco) In-vehicle time Walk access time Transfer wait time	Auto 140	Bus 76 273 195				Percentage of after tax wage
<i>Vacation Trips (U.S.)</i> Total travel time	Auto 6	Bus 79-87	Rail 54-69	Air 149		Percentage of pretax wage
<i>Freight</i> Total transit time			Rail 6-21		Truck 8-18	Percentage of shipment value per day

Source: Jose Gómez-Ibañez, William B. Tye, and Clifford Winston, editors, Essays in Transportation Economics and Policy, page 42. Brookings Institution Press, Washington D.C., 1999.

Role of Demand Models

- Forecasts, parameter estimates, elasticities, values of time, and consumer surplus measures obtained from demand models are used to improve understanding of the ramifications of alternative investment and policy decisions.
- Many uncertainties affect transport demand and the models are about to do the impossible

Role of Demand Models: Examples

- From Previous Lecture:
 - High Speed Rail: Works in Japan/Europe, how about in US?
 - Traffic Jams: Build more, manage better, or encourage transit use?
 - Truck Traffic: evaluate tradeoffs of environmental protection.

Part Two: Overview of Consumer Theory

Outline

- Basic concepts
 - Preferences
 - Utility
 - Choice
- Additional details important to transportation
- Relaxation of assumptions
- Appendix: Dual concepts in demand analysis

Preferences

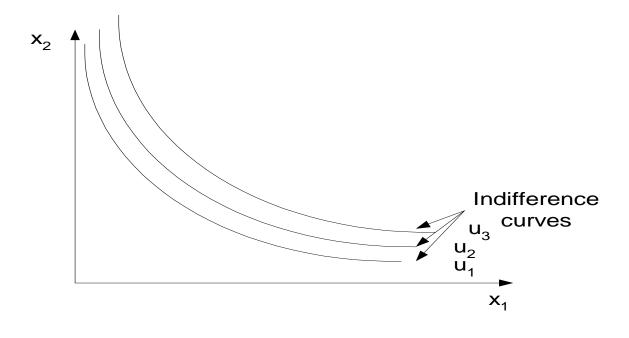
- The consumer is faced with a set of possible consumption bundles
 - Consumption bundle: a vector of quantities of different products and services $X = \{x_1, \dots, x_i, \dots, x_m\}$
 - A bundle is an array of consumption amounts of different goods
- Preferences: ordering of the bundles
 - $X \succ Y$: Bundle X is preferred to Y
 - Behavior: choose the most preferred consumption bundle
 - Transitivity, Completeness, and Continuity

The Utility Function

- A function that represents the consumer's preferences ordering
 X ≻ Y ⇔ U(X)>U(Y)
 - Utility function is not unique
 - $U(x_1, x_2) = ax_1 + bx_2$
 - $U(x_1, x_2) = x_1^a x_2^b$
 - Unaffected by order-preserving transformation
 - $10 \times U(x_1, x_2) + 10$?
 - $\exp(U(x_1, x_2))$?
 - $(U(x_1, x_2))^2$?

Indifference Curves

- Constant utility curve
- The consumer is indifferent among different bundles on the same curve



Marginal Utility and Trade-offs

• Marginal utility

$$MU_i = \frac{\partial U(X)}{\partial x_i}$$

 $U(x_1, x_2) = 4x_1 + 2x_2$
 $MU_1 = 4$
 $U(x_1, x_2) = x_1^{0.5} x_2^{0.5}$
 $MU_1 = 0.5x_1^{-0.5} x_2^{0.5}$

Marginal rate of substitution (MRS)

$$MRS = \frac{\frac{\partial U(X)}{\partial x_1}}{\frac{\partial U(X)}{\partial x_2}} = \frac{MU_1}{MU_2}$$

$$MRS = \frac{4}{2}$$

$$MRS = \frac{x_2}{x_1}$$

Consumer Behavior

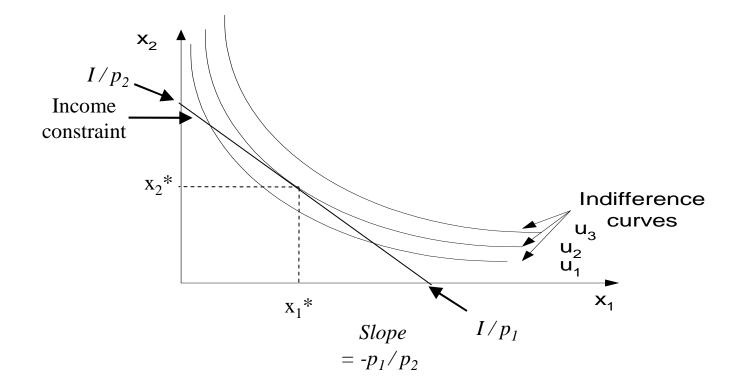
- Utility (preference) maximization
- Bounded by the available income

 $\max U(X)$

- s.t. $PX \le I$ $(\sum_{i=1}^{m} p_i x_i \le I)$
 - X feasible (e.g. non negativity)
- *P* vector of prices $P = \{p_1, ..., p_i, ..., p_m\}$
- I-income
- When considering two goods, the constraint would be:

 $p_1 x_1 + p_2 x_2 \leq I$

Geometry of the Consumer's Problem

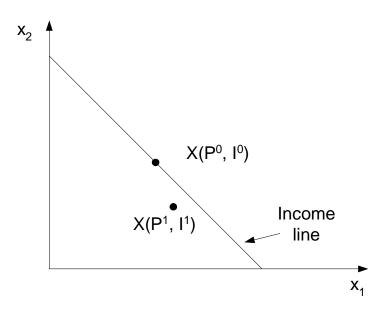


Revealed Preferences

 A chosen bundle is revealed preferred to all other feasible bundles:

 $X(P^0, I^0)$ - the demanded bundle at Point 0

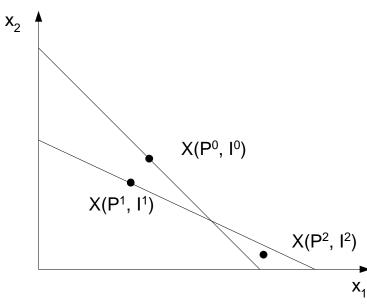
 $X(P^0, I^0) \succ X(P^1, I^1)$ if $P^0 X(P^0, I^0) \ge P^0 X(P^1, I^1)$



Indirect Revealed Preferences

- Transitivity of preferences:
 - $X(P^0, I^0)$ is indirectly revealed preferred to $X(P^2, I^2)$ if:

 $X(P^{0}, I^{0}) \succ X(P^{1}, I^{1})$ and $X(P^{1}, I^{1}) \succ X(P^{2}, I^{2})$



Optimal Consumption

• The consumer's problem $\max U(X)$ $s.t. PX \le I$ • Assuming U(X) increases with X PX = I• The Lagrangean $L(X, \lambda) = U(X) + \lambda(I - PX)$

 λ : Lagrange multiplier of budget constraint

Optimal Consumption

• Optimality conditions:

$$\frac{\partial L}{\partial x_i} = \frac{\partial U(X^*)}{\partial x_i} - \lambda p_i = 0 \qquad \forall i = 1, ..., m$$
$$\Rightarrow \quad \frac{\partial U(X^*)}{\partial x_i} = \lambda p_i \qquad \forall i$$

Dividing conditions:

$$\frac{\frac{\partial U(x^*)}{\partial x_i}}{\underbrace{\partial U(x^*)}_{MRS}} = \frac{p_i}{p_j} \qquad \forall i \neq j$$

Example: Cobb-Douglas Utility

• The consumer's problem:

$$\max U(X) = x_1^a x_2^b$$

s.t. $p_1 x_1 + p_2 x_2 \leq I$
• The Lagrangean: $L(X, \lambda) = x_1^a x_2^b + \lambda (I - p_1 x_1 - p_2 x_2)$
• Optimal solution:

$$\begin{cases} \frac{\partial L}{\partial x_{1}} = ax_{1}^{*a-1}x_{2}^{*b} - \lambda p_{1} = 0 & \frac{x_{1}^{*}}{x_{2}^{*}} = \frac{a}{b}\frac{p_{2}}{p_{1}} \\ \frac{\partial L}{\partial x_{2}} = bx_{1}^{*a}x_{2}^{*b-1} - \lambda p_{2} = 0 & x_{1}^{*} = \frac{a}{a+b}\frac{I}{p_{1}} \\ \frac{\partial L}{\partial \lambda} = I - p_{1}x_{1}^{*} - p_{2}x_{2}^{*} = 0 & x_{2}^{*} = \frac{b}{a+b}\frac{I}{p_{2}} \end{cases}$$

Review

Basic concepts

- Preferences
- Utility functions
- Optimal consumption
- Demand functions

Next...

- Indirect utility
- Complements and Substitutes
- Elasticity
- Consumer surplus

$$\max_{X^*} U(X) \text{ s.t. } PX \leq I$$
$$X^* = X(P, I)$$

U(X)

Indirect Utility Function

- Recall
 - X^* the demanded bundle
 - X(P, I) the consumer's demand function
- Indirect utility function
 - The maximum utility achievable at given prices and budget:

$$V(P,I) = \max \ U(X)$$

s.t. PX = I

- Substitute the solution X(P, I) back into the utility function to obtain:

maximum utility =
$$V(P, I) = U(X(P, I))$$

Example: Cobb-Douglas Utility

• Recall our earlier problem: $\max U(X) = x_1^a x_2^b$ s.t. $p_1 x_1 + p_2 x_2 \le I$

• We found:
$$x_1^* = \frac{a}{a+b} \frac{I}{p_1}$$
 $x_2^* = \frac{b}{a+b} \frac{I}{p_2}$

• So V(p,I) = ... =
$$\frac{I^{a+b}}{p_1^a p_2^b} \left[\left(\frac{a}{a+b} \right)^a \left(\frac{b}{a+b} \right)^b \right]$$

• What is $\frac{\partial V(p,I)}{\partial I}$?

Complements and Substitutes

Gross substitutes

$$\frac{\partial x_j(P,I)}{\partial p_i} > 0$$

• Gross complements

$$\frac{\partial x_j(P,I)}{\partial p_i} < 0$$

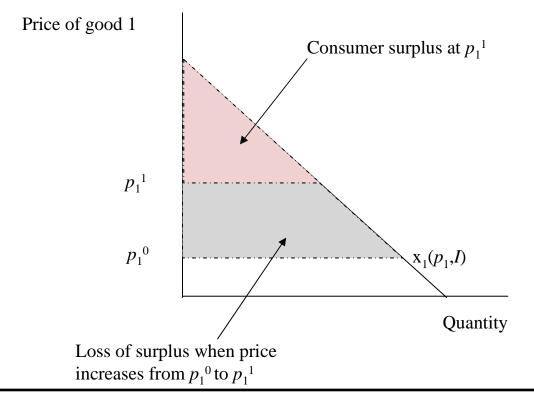
Demand Elasticity

- Percent change in demand resulting from 1% change in an attribute.

- Cross elasticity
$$\mathcal{E}_{p_i}^{x_j} = \frac{p_i}{x_j(P,I)} \frac{\partial x_j(P,I)}{\partial p_i}$$

Consumer Surplus (or Welfare)

- Consumer surplus
 - difference between the total value consumers receive from the consumption of a good and the amount paid



Consumer Surplus

• Consumer surplus is key for evaluating public policy decisions:

- Building transportation infrastructure
- Changing regulations (e.g., emissions)
- Determining fare and service structures

Review

- Basic concepts
 - Preference, Utility, Rationality
- Other useful details
 - Indirect utility
 - Complements and Substitutes
 - Elasticity
 - Consumer Surplus
- Next... Discussion of assumptions

Assumptions

- Impact of consumption of one good on utility of another good?
- Income is the only constraint
- Utility is a function of quantities (a good is a good)
- Demand curves are for an individual
- Behavior is deterministic
- Goods are infinitely divisible (continuous)

Separable Utility

 The consumption of one good does not affect the utility received from some other good

$$U(X) = \sum_{i=1}^{m} U_i(X_i)$$

Separability into groups of goods

$$U(X) = U(U_1(X_{g1}), ..., U_k(X_{gk}))$$

 X_{gk} - group *k* of goods

- Allows allocating budget in 2 stages:
 - Between groups
 - Within a group

Attributes of Goods

Classic: Only quantities matter.

Quantities \rightarrow Attributes

- The consumer receives utility from attributes of goods rather then the goods themselves
- Example: (dis)utility of an auto trip depends on travel time, cost, comfort etc.

$$U = U(A)$$
$$A = A(X)$$

- X-Goods
- A Attributes
- U-Utility

"Household Production" Model

- Consumers purchase goods in order to "produce" utility from them, depending on their attributes
- Classic example: Households purchase food in order to obtain calories and vitamins (could also include enjoyment of taste), which then produce "utility"

Utility of a Transportation Mode

- Consumption bundles: auto, bus, train, etc.
- Utility function

$$U_{bus} = \beta_0 + \beta_1 W T_{bus} + \beta_2 T T_{bus} + \beta_3 C_{bus}$$

- $-WT_{bus}$ –waiting time (minutes)
- $-TT_{bus}$ total travel time (minutes)
- $-C_{bus}$ total cost of trip (dollars)
- Parameters β represent tastes, and vary by education, gender, trip purpose, etc.

Time Budgets and Value of Time

 Along with *income constraint*, there is also a *time* constraint (e.g., 24 hours in a day)

 \rightarrow Gives time *value*.

 Value of time is the marginal rate of substitution between time and cost

$$U_{bus} = \beta_0 + \beta_1 W T_{bus} + \beta_2 T T_{bus} + \beta_3 C_{bus}$$
$$VOT = \frac{MU_{TT}}{MU_C} = \frac{\beta_2}{\beta_3} \, \frac{\beta_2}{\min}$$

Aggregate Consumer Demand

 Aggregate demand is the sum of demands of all consumers

$$X(P, I_1, ..., I_N) = \sum_{n=1}^N X_n(P, I_n)$$

- n An individual consumer
- *N* # of consumers
- Is this viable? Are individuals sufficiently similar to simply "add up"?

Heterogeneity

• Mobility rates, São Paulo, 1987:

Family income	Share in population	Mobility rate (all trips)	Mobility rate (motorized trips)
<240	20.8%	1.51	0.59
240-480	28.1%	1.85	0.87
480-900	26.0%	2.22	1.24
900-1800	17.2%	2.53	1.65
>1800	7.9%	3.02	2.28

Source: Vasconcellos, 1997, "The demand for cars in developing countries", Transportation Research A, 31(A): 245-258.

Introducing Uncertainty

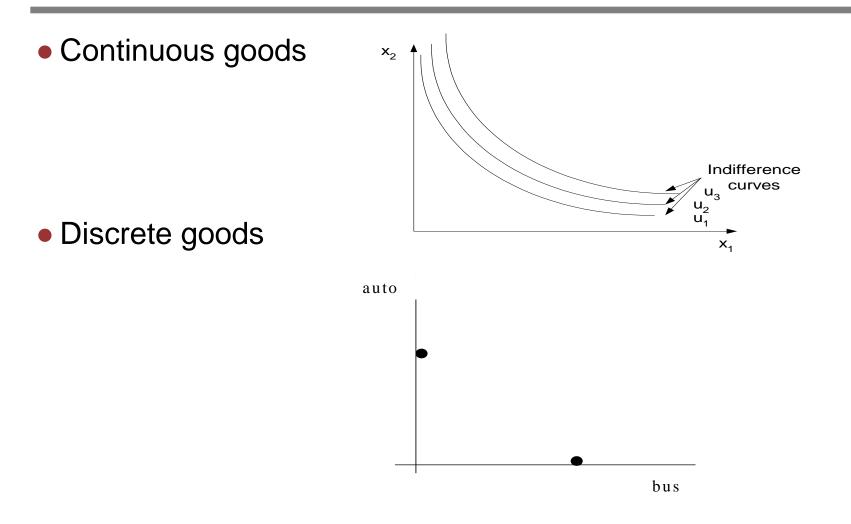
Random utility model

 $U_i = V(\text{attributes of } i; \text{ parameters}) + epsilon_i$

- Decision maker deterministic, but analyst imperfect due to:
 - Unobserved attributes
 - Unobserved taste variations
 - Measurement errors
 - Use of proxy variables

39

Continuous vs. Discrete Goods



Summary

- Basic concepts
 - Preference, Utility, Rationality
- Other useful details
 - Indirect utility
 - Complements and Substitutes
 - Elasticity, Consumer Surplus
- Relaxing the assumptions and working towards practical, empirical models

Next Lecture... Discrete Choice Analysis

Appendix

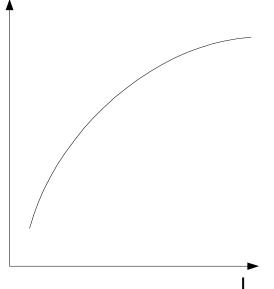
Dual concepts in demand analysis

Expenditure Function

- The minimal income needed to achieve any level of utility at given prices
 u
- Solution to the problem:

 $E(P, u) = \min PX$

- s.t. $U(X) \ge u$
- The dual to the utility maximization problem



Cobb-Douglas Utility

Min $p_1 x_1 + p_2 x_2$ Subject to $x_1^a x_2^b \ge u$

• Similar formula for the Lagrangean and solve...

• We find:

$$x_1^* = \left[\frac{p_2}{p_1} \cdot \frac{a}{b}\right]^{b/a+b} u^{1/a+b}$$

• So:

$$E(p,u) = p_1 x_1^* + p_2 x_2^*$$

Consumer Surplus

• Directly related to the expenditure function

• Let
$$E_1 = E(p_1^1, p_2, ..., p_m, u_0)$$

and $E_0 = E(p_1^0, p_2, ..., p_m, u_0)$

• Change in consumer surplus = $E_0 - E_1$

Compensated Demand Function

• The expenditure problem solution:

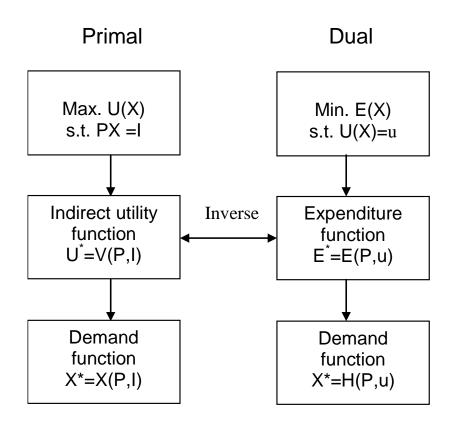
$$E(P,u) = \min PX$$

s.t. $U(X) \ge u$ $\Rightarrow X(P,u) = H(P,u)$

- H(P, u) is the compensated demand function
- Shows the demand for a good as a function of prices assuming utility is held constant.
- Substituting back into the objective function:

$$E(P,u) = \sum_{i} p_{i} x_{i}(P,u) = PX(P,u)$$

Relations Among Demand Concepts



1.201J / 11.545J / ESD.210J Transportation Systems Analysis: Demand and Economics Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.