Discrete Choice Analysis II

Moshe Ben-Akiva

1.201 / 11.545 / ESD. 210

Transportation Systems Analysis: Demand \& Economics
Fall 2008

Massachusetts Institute of Technology

Review - Last Lecture

- Introduction to Discrete Choice Analysis
- A simple example - route choice
- The Random Utility Model
- Systematic utility
- Random components
- Derivation of the Probit and Logit models
- Binary Probit
- Binary Logit
- Multinomial Logit

Outline - This Lecture

- Model specification and estimation
- Aggregation and forecasting
- Independence from Irrelevant Alternatives (IIA) property Motivation for Nested Logit
- Nested Logit - specification and an example
- Appendix:
- Nested Logit model specification
- Advanced Choice Models

Specification of Systematic Components

- Types of Variables
- Attributes of alternatives: $Z_{i n}$, e.g., travel time, travel cost
- Characteristics of decision-makers: S_{n}, e.g., age, gender, income, occupation
- Therefore: $X_{i n}=h\left(Z_{i n}, S_{n}\right)$
- Examples:
- $X_{\text {in } 1}=Z_{\text {in } 1}=$ travel cost
- $X_{\text {in2 }}=\log \left(Z_{\text {in2 }}\right)=\log$ (travel time)
- $X_{i n 3}=Z_{i n 1} / S_{n 1}=$ travel cost / income
- Functional Form: Linear in the Parameters

$$
\begin{aligned}
& V_{i n}=\beta_{1} X_{i n 1}+\beta_{2} X_{i n 2}+\ldots+\beta_{k} X_{i n k} \\
& V_{j n}=\beta_{1} X_{j n 1}+\beta_{2} X_{j n 2}+\ldots+\beta_{k} X_{j n k}
\end{aligned}
$$

Data Collection

- Data collection for each individual in the sample:
- Choice set: available alternatives
- Socio-economic characteristics
- Attributes of available alternatives
- Actual choice

n	Income	Auto Time	Transit Time	Choice
1	35	15.4	58.2	Auto
2	45	14.2	31.0	Transit
3	37	19.6	43.6	Auto
4	42	50.8	59.9	Auto
5	32	55.5	33.8	Transit
6	15	N/A	48.4	Transit

Model Specification Example

$$
\begin{aligned}
& V_{\text {auto }}=\beta_{0}+\beta_{1} T T_{\text {auto }}+\beta_{2} \operatorname{In}(\text { Income }) \\
& V_{\text {transit }}=\quad \beta_{1} T T_{\text {transit }}
\end{aligned}
$$

	β_{0}	β_{1}	β_{2}
Auto	1	$T T_{\text {auto }}$	$\operatorname{In}($ Income $)$
Transit	0	$T T_{\text {transit }}$	0

Probabilities of Observed Choices

- Individual 1 :

$$
\begin{aligned}
& V_{\text {auto }}=\beta_{0}+\beta_{1} 15.4+\beta_{2} \ln (35) \\
& V_{\text {transit }}=\beta_{1} 58.2
\end{aligned}
$$

$$
P(\text { Auto })=\frac{e^{\beta_{0}+15.4 \beta_{1}+\ln (35) \beta_{2}}}{e^{\beta_{0}+15.4 \beta_{1}+\ln (35) \beta_{2}}+e^{58.2 \beta_{1}}}
$$

- Individual 2 :

$$
\begin{aligned}
& V_{\text {auto }}=\beta_{0}+\beta_{1} 14.2+\beta_{2} \ln (45) \\
& V_{\text {transit }}=\beta_{1} 31.0
\end{aligned}
$$

$$
P(\text { Transit })=\frac{e^{31.0 \beta_{1}}}{e^{\beta_{0}+14.2 \beta_{1}+\ln (45) \beta_{2}}+e^{31.0 \beta_{1}}}
$$

Maximum Likelihood Estimation

- Find the values of β that are most likely to result in the choices observed in the sample:
$-\max L^{*}(\beta)=P_{1}$ (Auto) $P_{2}\left(\right.$ Transit) $\ldots P_{6}$ (Transit)
- If $y_{i n}=\left\{\begin{array}{l}1, \text { if person } n \text { chose alternative } i \\ 0, \text { if person } n \text { chose alternative } j\end{array}\right.$
- Then we maximize, over choices of $\left\{\beta_{1}, \beta_{2} \ldots, \beta_{k}\right\}$, the following expression:

$$
L^{*}\left(\beta_{1}, \beta_{2}, \ldots, \quad \beta_{k}\right)=\prod_{n=1}^{N} P_{n}(i)^{y_{i n}} P_{n}(j)^{y_{j n}}
$$

- $\beta^{*} \quad=\arg \max _{\beta} L^{*}\left(\beta_{1}, \beta_{2}, \ldots, \beta_{k}\right)$
$=\arg \max _{\beta} \log L^{*}\left(\beta_{1}, \beta_{2}, \ldots, \beta_{k}\right)$

Sources of Data on User Behavior

- Revealed Preferences Data
- Travel Diaries
- Field Tests
- Stated Preferences Data
- Surveys
- Simulators

Stated Preferences / Conjoint Experiments

- Used for product design and pricing
- For products with significantly different attributes
- When attributes are strongly correlated in real markets
- Where market tests are expensive or infeasible
- Uses data from survey "trade-off" experiments in which attributes of the product are systematically varied
- Applied in transportation studies since the early 1980 s

Aggregation and Forecasting

- Objective is to make aggregate predictions from
- A disaggregate model, $P\left(i \mid X_{n}\right)$
- Which is based on individual attributes and characteristics, X_{n}
- Having only limited information about the explanatory variables

The Aggregate Forecasting Problem

- The fraction of population T choosing alt. i is:

$$
\begin{aligned}
W(i) & =\int_{X} P(i \mid X) p(X) d X, p(X) \text { is the density function of } X \\
& =\frac{1}{N_{T}} \sum_{n=1}^{N_{T}} P\left(i \mid X_{n}\right), N_{T} \text { is the \# in the population of interest }
\end{aligned}
$$

- Not feasible to calculate because:
- We never know each individual's complete vector of relevant attributes
- $\quad p(X)$ is generally unknown
- The problem is to reduce the required data

Sample Enumeration

- Use a sample to represent the entire population
- For a random sample:
$\hat{W}(i)=\frac{1}{N_{s}} \sum_{n=1}^{N_{n}} \hat{P}\left(i \mid x_{n}\right)$ where N_{s} is the \# of obs. in sample
- For a weighted sample:

$$
\hat{W}(i)=\sum_{n=1}^{N_{s}} \frac{w_{n}}{\sum_{n} w_{n}} \hat{P}\left(i \mid x_{n}\right), \text { where } \frac{1}{w_{n}} \text { is } x_{n} \text { 's selection prob. }
$$

- No aggregations bias, but there is sampling error

Disaggregate Prediction

Generating Disaggregate Populations

Review

- Empirical issues
- Model specification and estimation
- Aggregate forecasting
- Next...More theoretical issues
- Independence from Irrelevant Alternatives (IIA) property Motivation for Nested Logit
- Nested Logit - specification and an example

Summary of Basic Discrete Choice Models

- Binary Probit:

$$
\mathrm{P}_{n}\left(i \mid C_{n}\right)=\Phi\left(V_{n}\right)=\int_{-\infty}^{V_{n}} \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} \varepsilon^{2}} d \varepsilon
$$

- Binary Logit:

$$
\mathrm{P}_{n}\left(i \mid C_{n}\right)=\frac{1}{1+e^{-V_{n}}}=\frac{e^{V_{i n}}}{e^{V_{i n}}+e^{V_{j n}}}
$$

- Multinomial Logit:

$$
\mathrm{P}_{n}\left(i \mid C_{n}\right)=\frac{e^{V_{i n}}}{\sum_{j \in C_{n}} e^{V_{j n}}}
$$

Independence from Irrelevant Alternatives (IIA)

- Property of the Multinomial Logit Model
$-\varepsilon_{j n}$ independent identically distributed (i.i.d.)
$-\varepsilon_{j n} \sim \operatorname{ExtremeValue}(0, \mu) \quad \forall j$
$-\mathrm{P}_{n}\left(i \mid C_{n}\right)=\frac{e^{\mu V_{i n}}}{\sum_{j \in C_{n}} e^{\mu V_{j n}}}$
so $\frac{\mathrm{P}\left(i \mid C_{1}\right)}{\mathrm{P}\left(j \mid C_{1}\right)}=\frac{\mathrm{P}\left(i \mid C_{2}\right)}{\mathrm{P}\left(j \mid C_{2}\right)} \quad \forall i, j, C_{1}, C_{2}$
such that $i, j \in C_{1}, i, j \in C_{2}, C_{1} \subseteq C_{n}$ and $C_{2} \subseteq C_{n}$

Examples of IIA

- Route choice with an overlapping segment

$$
P(1 \mid\{1,2 a, 2 b\})=P(2 a \mid\{1,2 a, 2 b\})=P(2 b \mid\{1,2 a, 2 b\})=\frac{e^{\mu T}}{\sum_{j \in\{1,2 a, 2 b\}} e^{\mu T}}=\frac{1}{3}
$$

Red Bus / Blue Bus Paradox

- Consider that initially auto and bus have the same utility
- $C_{n}=\{$ auto, bus $\}$ and $V_{\text {auto }}=V_{\text {bus }}=V$
- P (auto) $=P$ (bus) $=1 / 2$
- Suppose that a new bus service is introduced that is identical to the existing bus service, except the buses are painted differently (red vs. blue)
$-C_{n}=\{$ auto, red bus, blue bus $\} ; V_{\text {red bus }}=V_{\text {blue bus }}=V$
- Logit now predicts
$P($ auto $)=P($ red bus $)=P($ blue bus $)=1 / 3$
- We'd expect
$P($ auto $)=1 / 2, P($ red bus $)=P($ blue bus $)=1 / 4$

IIA and Aggregation

- Divide the population into two equally-sized groups: those who prefer autos, and those who prefer transit
- Mode shares before introducing blue bus:

Population	Auto Share	Red Bus Share	
Auto people	90%	10%	$\mathrm{P}(\mathrm{auto}) / \mathrm{P}($ red bus $)=9$
Transit people	10%	90%	$\mathrm{P}(\mathrm{auto}) / \mathrm{P}($ red bus $)=1 / 9$
Total	50%	50%	

- Auto and red bus share ratios remain constant for each group after introducing blue bus:

Population	Auto Share	Red Bus Share	Blue Bus Share
Auto people	81.8%	9.1%	9.1%
Transit people	5.2%	47.4%	$\mathbf{4 7 . 4 \%}$
Total	$\mathbf{4 3 . 5} \%$	$\mathbf{2 8 . 2 5 \%}$	$\mathbf{2 8 . 2 5 \%}$

Motivation for Nested Logit

- Overcome the IIA Problem of Multinomial Logit when
- Alternatives are correlated (e.g., red bus and blue bus)
- Multidimensional choices are considered (e.g., departure time and route)

Tree Representation of Nested Logit

- Example: Mode Choice (Correlated Alternatives)

Tree Representation of Nested Logit

- Example: Route and Departure Time Choice (Multidimensional Choice)

Nested Model Estimation

- Logit at each node
- Utilities at lower level enter at the node as the inclusive value

- The inclusive value is often referred to as logsum

Nested Model - Example

$$
\begin{gathered}
\text { Non- } \\
\mathrm{P}(i \mid N M)=\frac{e^{\mu_{N M} V_{i}}}{e^{\mu_{N M} V_{\text {Walk }}}+e^{\mu_{N M} V_{\text {Bike }}}} \quad i=\text { Walk, Bike } \\
I_{N M}=\frac{1}{\mu_{N M}} \ln \left(e^{\mu_{N M} V_{\text {Walk }}}+e^{\mu_{N M} V_{\text {Bike }}}\right)
\end{gathered}
$$

Nested Model - Example

$$
\begin{gathered}
\mathrm{P}(i \mid M)=\frac{e^{\mu_{M} V_{i}}}{e^{\mu_{M} V_{C a r}}+e^{\mu_{M} V_{\text {Taxi }}}+e^{\mu_{M} V_{B u s}}} \quad i=\text { Car }, \text { Taxi, Bus } \\
I_{M}=\frac{1}{\mu_{M}} \ln \left(e^{\mu_{M} V_{C a r}}+e^{\mu_{M} V_{\text {Taxi }}}+e^{\mu_{M} V_{B u s}}\right)
\end{gathered}
$$

Nested Model - Example

Nested Model - Example

- Calculation of choice probabilities

$$
\begin{aligned}
& \mathrm{P}(\text { Bus })=P(B u s \mid M) \cdot P(M) \\
& =\left[\frac{e^{\mu_{M} V_{B u s}}}{e^{\mu_{M} V_{C a r}}+e^{\mu_{M} V_{\text {Taxi }}}+e^{\mu_{M} V_{B u s}}}\right] \cdot\left[\frac{e^{\mu U_{M}}}{e^{\mu \omega_{N M}}+e^{\mu \mu_{M}}}\right]
\end{aligned}
$$

Extensions to Discrete Choice Modeling

- Multinomial Probit (MNP)
- Sampling and Estimation Methods
- Combined Data Sets
- Taste Heterogeneity
- Cross Nested Logit and GEV Models
- Mixed Logit and Probit (Hybrid Models)
- Latent Variables (e.g., Attitudes and Perceptions)
- Choice Set Generation

Summary

- Introduction to Discrete Choice Analysis
- A simple example
- The Random Utility Model
- Specification and Estimation of Discrete Choice Models
- Forecasting with Discrete Choice Models
- IIA Property - Motivation for Nested Logit Models
- Nested Logit

Additional Readings

- Ben-Akiva, M. and Bierlaire, M. (2003), 'Discrete Choice Models With Applications to Departure Time and Route Choice,' The Handbook of Transportation Science, 2nd ed., (eds.) R.W. Hall, Kluwer, pp. 7-38.
- Ben-Akiva, M. and Lerman, S. (1985), Discrete Choice Analysis, MIT Press, Cambridge, Massachusetts.
- Train, K. (2003), Discrete Choice Methods with Simulation, Cambridge University Press, United Kingdom.
- And/Or take 1.202 next semester!

Appendix

Nested Logit model specification Cross-Nested Logit
Logit Mixtures (Continuous/Discrete)
Revealed + Stated Preferences

Nested Logit Model Specification

- Partition C_{n} into M non-overlapping nests:

$$
C_{m n} \cap C_{m^{\prime} n}=\varnothing \forall m \neq m^{\prime}
$$

- Deterministic utility term for nest $C_{m n}$:

$$
V_{C_{m n}}=\tilde{V}_{C_{m n}}+\frac{1}{\mu_{m}} \ln \sum_{j \in C_{m n}} e^{\mu_{m} \tilde{V}_{j n}}
$$

- Model: $P\left(i \mid C_{n}\right)=P\left(C_{m n} \mid C_{n}\right) P\left(i \mid C_{m n}\right), i \in C_{m n} \subseteq C_{n}$ where

$$
P\left(C_{m n} \mid C_{n}\right)=\frac{e^{\mu V_{C_{m n}}}}{\sum_{l} e^{\mu V_{c_{l n}}}} \quad \text { and } \quad P\left(i \mid C_{m n}\right)=\frac{e^{\mu_{m} \tilde{\zeta}_{i n}}}{\sum_{j \in C_{m n}} e^{\mu_{m} \tilde{j}_{j n}}}
$$

Continuous Logit Mixture

Example:

- Combining Probit and Logit
- Error decomposed into two parts
- Probit-type portion for flexibility
- i.i.d. Extreme Value for tractability
- An intuitive, practical, and powerful method
- Correlations across alternatives
- Taste heterogeneity
- Correlations across space and time
- Requires simulation-based estimation

Cont. Logit Mixture: Error Component

Illustration

- Utility:

$$
\begin{aligned}
& U_{\text {auto }}=\beta X_{\text {auto }}+\xi_{\text {auto }}+v_{\text {auto }} \\
& U_{\text {bus }}=\beta X_{\text {bus }}+\xi_{\text {bus }}+v_{\text {bus }} \\
& U_{\text {subway }}=\beta X_{\text {subway }}+\xi_{\text {subway }}+v_{\text {subway }}
\end{aligned}
$$

$$
\begin{aligned}
& \text { ع i.i.d. Extreme Value } \\
& \text { e.g. } \xi \sim N(0, \Sigma)
\end{aligned}
$$

- Probability:

$$
\begin{aligned}
& \Lambda(\text { auto } \mid \mathrm{X}, \xi)=\frac{e^{\beta X_{\text {auto }}+\xi_{\text {auto }}}}{e^{\beta X_{\text {auto }}+\xi_{\text {auto }}}+e^{\beta X_{\text {bus }}+\xi_{\text {bus }}}+e^{\beta X_{\text {subway }}+\xi_{\text {sulbayy }}}} \\
& \xi \text { unknown } \rightarrow \begin{array}{l}
\mathrm{P}(\text { auto } \mid \mathrm{X})=\int_{\xi} \Lambda(\text { auto } \mid X, \xi) f(\xi) d \xi
\end{array}
\end{aligned}
$$

Continuous Logit Mixture

Random Taste Variation

- Logit: β is a constant vector
- Can segment, e.g. $\beta_{\text {low inc }}, \beta_{\text {med inc }}, \beta_{\text {high inc }}$
- Logit Mixture: β can be randomly distributed
- Can be a function of personal characteristics
- Distribution can be Normal, Lognormal, Triangular, etc

Discrete Logit Mixture

Latent Classes

Main Postulate:

- Unobserved heterogeneity is "generated" by discrete or categorical constructs such as
$>$ Different decision protocols adopted
$>$ Choice sets considered may vary
$>$ Segments of the population with varying tastes
- Above constructs characterized as latent classes

Latent Class Choice Model

$$
\begin{aligned}
& P(i)= \\
& \sum_{s=1}^{S} \Lambda(i \mid s) Q(s)
\end{aligned}
$$

Class-specific
Choice Model
Class
Membership
Model
(probability of (probability of choosing $i \quad$ belonging to
conditional on class s)
belonging to
class s)

Summary of Discrete Choice Models

	Logit	NL/CNL	Probit	Logit Mixture
Handles unobserved taste heterogeneity	No	No	Yes	Yes
Flexible substitution pattern	No	Yes	Yes	Yes
Handles panel data	No	No	Yes	Yes
Requires error terms normally distributed	No	No	Yes	No
Closed-form choice probabilities available	Yes	Yes	No	No (cont.)
Numerical approximation and/or simulation needed	No	No	Yes	Yes (cont.)

6. Revealed and Stated Preferences

- Revealed Preferences Data
- Travel Diaries
- Field Tests
- Stated Preferences Data
- Surveys
- Simulators

Stated Preferences / Conjoint Experiments

- Used for product design and pricing
- For products with significantly different attributes
- When attributes are strongly correlated in real markets
- Where market tests are expensive or infeasible
- Uses data from survey "trade-off" experiments in which attributes of the product are systematically varied
- Applied in transportation studies since the early 1980s
- Can be combined with Revealed Preferences Data
- Benefit from strengths
- Correct for weaknesses
- Improve efficiency

Framework for Combining Data

Massachusetts Institute of Technology
|http://ocw.mit.edu
1.201J / 11.545J / ESD.210J Transportation Systems Analysis: Demand and Economics Fall 2008

For information about citing these materials or our Terms of Use, visit:|http://ocw.mit.edu/terms.

