Travel Demand Modeling

Moshe Ben-Akiva

1.201 / 11.545 / ESD.210 Transportation Systems Analysis: Demand & Economics

Fall 2008

Review

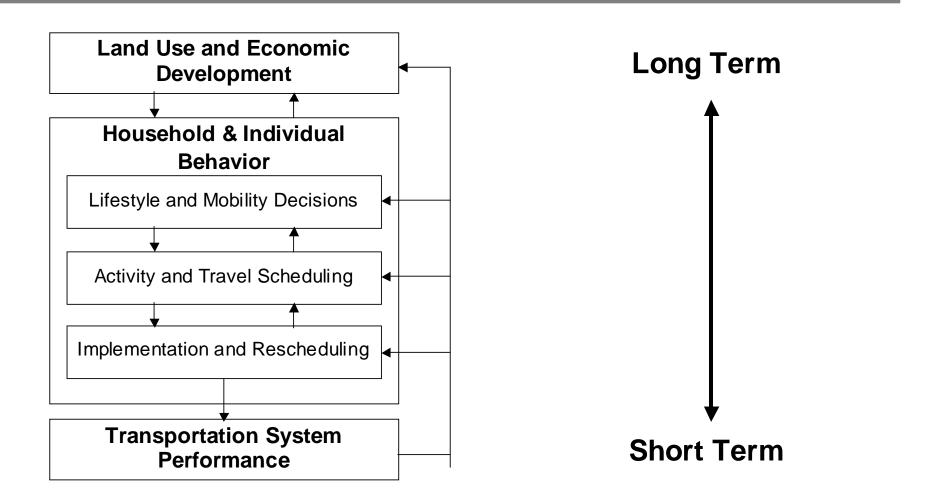
- Discrete Choice Framework
 - A decision maker *n* selects one and only one alternative *i* from a choice set $C_n = \{1, ..., J_n\}$
 - Random Utility Model where

 $U_{in} = V_{in}$ (attributes of *i*, characteristics of *n*, β) + ε_{in}

- Discrete Choice Models
 - Multinomial Logit
 - Nested Logit
 - Correlated Alternatives
 - Multidimensional Choice
- Next... Travel Demand Modeling

Outline

- Introduction
- Approaches
 - Trip
 - Tour
 - Activity
- Emerging Approaches


Long Term Choices

- Urban Development
 - Firm location and relocation decisions
 - Firm investment in information technology
- Mobility and Lifestyle Decisions
 - Labor force participation
 - Workplace location
 - Housing
 - Automobile ownership
 - Information technology ownership and access
 - Activity program

Activity and Travel Pattern Choices

- Activity sequence and duration
- Priorities for activities
- Tour formation
- Telecommunications options
- Access travel information
 - Traffic conditions
 - Route guidance
 - Parking availability
 - Public transportation schedules
- Reschedule activities
- Revise travel plans

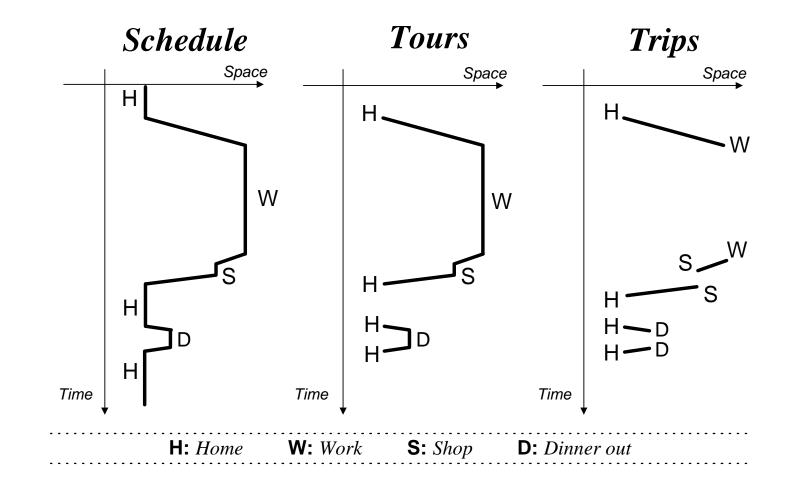
Modeling Framework

The Fundamental Modeling Problem

- Adequately represent a decision process that has an inordinate number of feasible outcomes in many dimensions
- Example Activity Schedule

Total Number of Activity Schedule Alternatives		10 ¹⁷
Route	10 per activity	100
Mode	5 per activity	50
Location	1000 per activity	10,000
Timing	10 per activity	100
Sequence		10!
Number of activities	10	10

- Simplify
- Achieve valid results

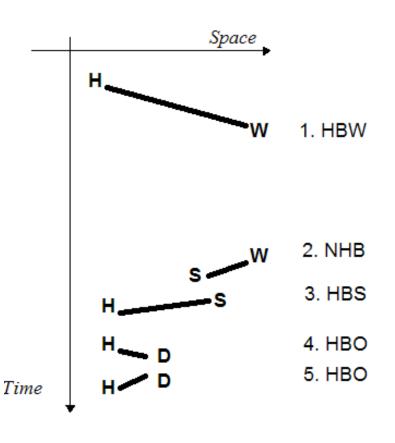

Simplifying the Problem

- Discrete time intervals
- Individuals defined by socioeconomic variables
- Divide space into zones
- Categories of activities
- Depiction of travel patterns
 - \rightarrow trips, tours, activity schedules

Approaches to Modeling Travel

- Trip-based
- Integrated trip-based
- Tour-based
- Activity schedule

Representing Activity/Travel Behavior


Trip-Based: The 4-Step Model

Trip Purpose

Home-based work (HBW) Home-based shop (HBS) Home-based other (HBO) Non-home-based (NHB)

Behavioral Steps

- 1. Trip Generation (Frequency)
- 2. Trip Distribution (Destination)
- 3. Modal Split (Mode)
- 4. Assignment (Route)

The 4-Step Model: Trip Generation

- Trip Production
 - Household Size, Household Structure, Income, Car Ownership, Residential Density, Accessibility
- Trip Attractions
 - Land-use and Employment by Category (e.g. Industrial, Commercial, Services), Accessibility
- Cross Classification, Regression, Growth Factor

The 4-Step Model: Trip Distribution

• Trip matrix

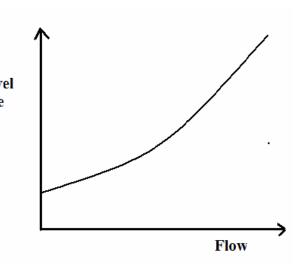
	Attractions							
Generations	1	2	3	•••	j	•••	J	$\sum_j T_{ij}$
1	T_{11}	T_{12}	T_{13}	•••	T_{1j}	•••	T_{IJ}	O_1
2	T_{21}	T_{22}		•••	T_{2j}	•••	T_{2J}	O_2
3	T_{31}	T_{32}	T_{33}	•••	T_{3j}	•••	T_{3J}	O_3
:	:	:	:		•		:	:
i	T_{il}	T_{i2}	T_{i3}	••••	T_{ij}	•••	T_{iJ}	O_i
:	:	:	•		•		:	:
Ι	T_{II}	T_{I2}	<i>T</i> _{<i>I</i>3}	•••	T _{Ij}		T_{IJ}	O_I
$\sum_i T_{ij}$	D_1	D_2	D_3		D_j		D_J	$\sum_{i}\sum_{j} T_{ij} = T$

The 4-Step Model: Trip Distribution

Gravity Model

$$T_{ij} = \alpha_i O_i \beta_j D_j f(C_{ij}), \ i = 1....I \ and \ j = 1....J$$
$$\sum_j T_{ij} = O_i, \qquad i = 1....I$$
$$\sum_i T_{ij} = D_j, \qquad j = 1....J$$

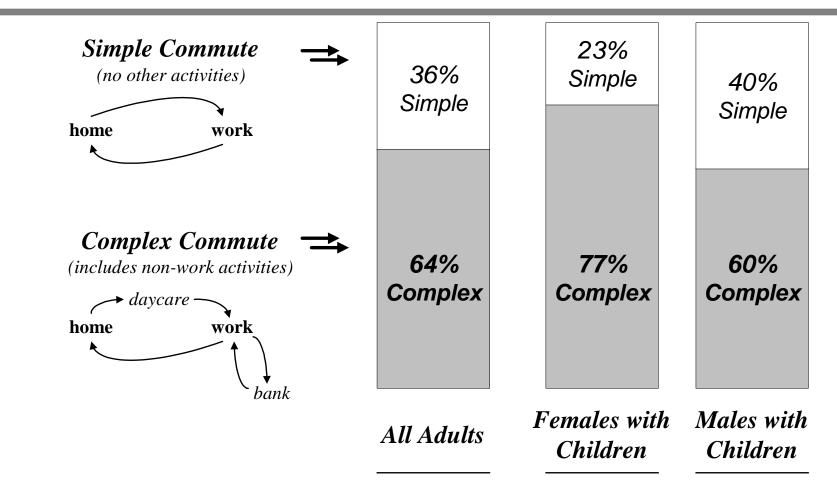
- Where,
- $f(C_{ij})$ = Function of the generalized cost of travel from *i* to *j* and
- α_i and β_j are balancing factors


Solve iteratively for T_{ij} , α_i and β_j

The 4-Step Model: Modal Split

• Logit $P(auto) = \frac{e^{V_{auto}}}{e^{V_{auto}} + e^{V_{transit}}}$ • Nested Logit $P(NM) = \frac{e^{\mu I_{NM}}}{e^{\mu I_{NM}} + e^{\mu I_{M}}}$ motorized motorized

The 4-Step Model: Assignment


- Route Choice
 - Deterministic: Shortest Path, Minimum Generalized Cost
 - Stochastic: Discrete Choice (e.g. Logit)
- Equilibrium
 - Supply Side
 - User Equilibrium vs. System Optimal Travel

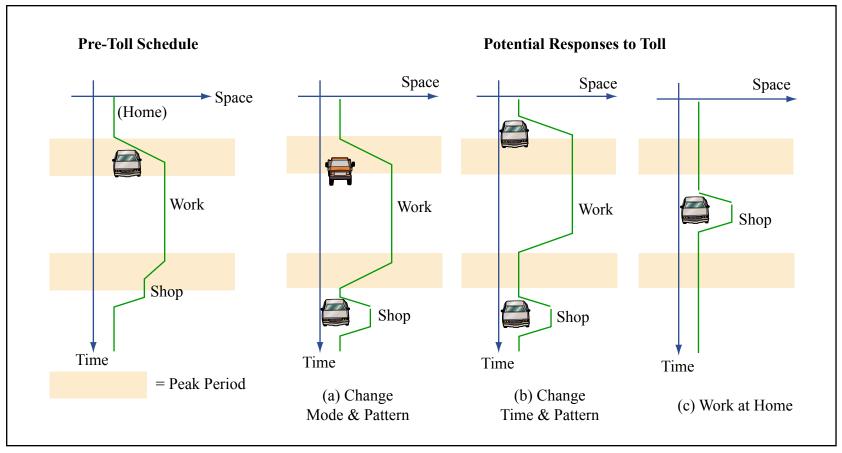
Limitations of the Trip-Based Method

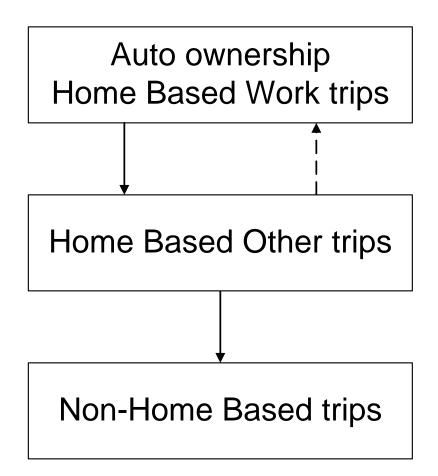
- Demand for trip making rather than for activities
- Person-trips as the unit of analysis
- Aggregation errors:
 - Spatial aggregation
 - Demographic aggregation
 - Temporal aggregation
- Sequential nature of the four-step process
- Behavior modeled in earlier steps unaffected by choices modeled in later steps (e.g. no induced travel)
- Limited types of policies that can be analyzed

Complexity of Work Commute (Boston)

Source: Ben-Akiva and Bowman, 1998, "Activity Based Travel Demand Model Systems," in Equilibrium and Advanced Transportation Modeling, Kluwer Academic.

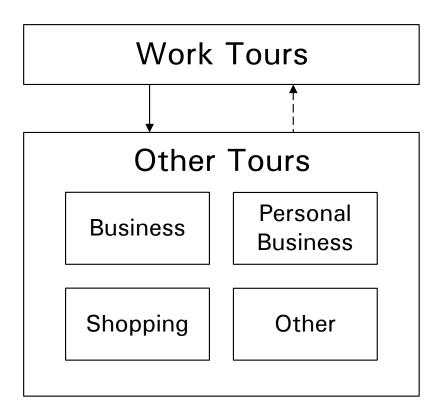
Complex Responses to Policies Example: Peak-Period Toll




Figure by MIT OpenCourseWare.

Modeling Travel at the Level of the Individual

- Classic 4-step
 - Trip Frequency
 - Destination Choice
 - Mode Choice
 - Route Choice
- Beyond 4-step
 - Time of Day
 - Integrated Trips
 - Tours


Integrated Trip-Based Framework (e.g., MTC, STEP)

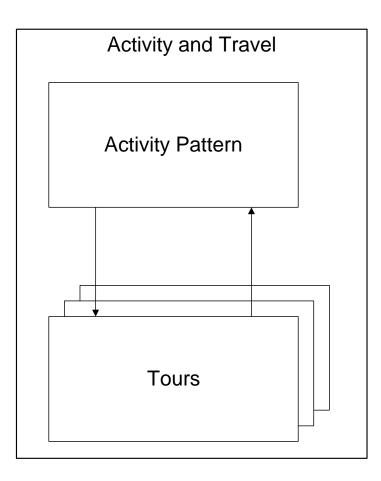
Highlights of Integrated Trip-Based System

- Key features
 - Disaggregate choice models
 - Models are integrated, via conditionality and measures of inclusive value, according to the decision framework
- Key weakness
 - Modeling of trips rather than explicit tours

Tour-Based Framework (e.g. Stockholm)

Highlights of Tour-Based System

- Key features
 - Explicitly chains trips in tours
 - Validated and widely applied
- Key weaknesses
 - Lacks an integrated schedule pattern
 - Doesn't integrate well the time dimension
- Data requirements
 - Same as for trip-based models



Basics of Activity-Based Travel Theory

- Travel demand is derived from demand for activities
- Tours are interdependent
- People face time and space constraints that limit their activity schedule choice
- Activity and travel scheduling decisions are made in the context of a broader framework
 - Conditioned by outcomes of longer term processes
 - Interacts with the transportation system
 - Influenced by intra-household interactions
 - Occurs dynamically with influence from past and anticipated future events

Activity Schedule System

Activity Pattern

- Replaces trip and tour generation steps of trip and tour-based models
- Models number, purpose and sequence of tours
 - Tours are interdependent

Table removed due to copyright restrictions.

Example of Activity Patterns

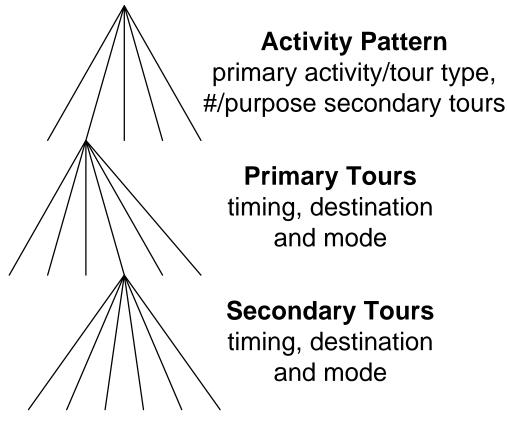
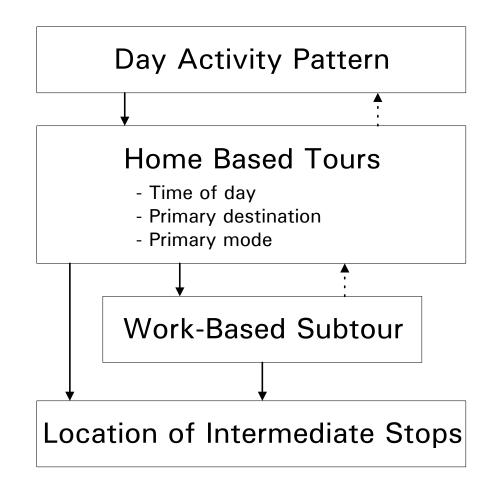

Portland, OR

Table removed due to copyright restrictions.

Tours

- Primary Tour
 - Primary and secondary destinations
 - Timing
 - Modes
- Secondary Tours
 - Primary and secondary destinations
 - Timing
 - Modes

Model Structure


Primary Tours timing, destination

Secondary Tours

Highlights of Activity Schedule System

- Key feature
 - Integrated schedule
- Key weaknesses
 - Larger choice set
 - Unrealistic behaviorally
 - Computationally burdensome
 - Incomplete representation
 - Coarse representation of schedule
 - Coupling constraints

Portland Activity-Based Model [570 Pattern Alternatives]

\$0.50/mile Peak Period Toll

• Shift in patterns

Type of Pattern by primary activity	% before	% change
Work	62.2%	-2.0%
Maintenance	25.0%	3.4%
Leisure	12.8%	3.3%
All patterns	100.0%	

\$0.50/mile Peak Period Toll

• Shift in work patterns

Type of Work Pattern	% before	% change
Athome		
0 sec tours	1.3%	11.5%
1+sec tours	4.0%	6.2%
Simple work tour		
0 sec tours	30.7%	-1.2%
1+sec tours	17.0%	-3.6%
Complex work tour		
0 sec tours	32.6%	-2.3%
1+sec tours	14.3%	-4.7%
Total work patterns	100.0%	-2.0%

\$0.50/mile Peak Period Toll

• Shift in work tour mode and chaining

Type of work tour	% before	% change
Drive alone simple	36.6%	-20.3%
Drive alone chained	39.2%	-17.3%
Other simple	13.6%	47.4%
Other chained	10.6%	54.9%
Total work tours	100.0%	

\$0.50/mile Peak Period Toll

Tour purpose and time-of-day effects

	Percent change in total number of home-based tours		
	Work	Maint.	Leisure
A.M. Peak	-7.10%	-8.40%	-6.20%
P.M. Peak	-7.40%	-7.70%	-1.50%
Midday	3.10%	3.60%	2.80%
Outside Peak	6.80%	2.30%	2.70%
Total	-2.60%	-0.30%	1.00%

Bowman, 1998, "The Day Activity Schedule Approach to Travel Demand Analysis," PhD Thesis, MIT Source:

Trends in Transportation Demand Modeling

• DATA:

Massive OD Surveys → Small-Scale Detailed Surveys

• MODELING METHODS:

Aggregate Models \rightarrow Disaggregate Models Static \rightarrow Dynamic Canned Statistical Procedures \rightarrow Flexible Estimation of Models

• APPLICATION/FORECASTING:

Mainframe \rightarrow User-friendly GIS, powerful PC Systems Aggregate Forecasting \rightarrow Disaggregate Forecasting (microsimulation)

• BEHAVIORAL REPRESENTATION:

Homogeneous \rightarrow Heterogeneous (including demographics, attitudes and perceptions) Trips \rightarrow Activity Schedules

Emerging Travel Modeling Approaches

- Activity and Trip-Chaining Models
 - Activity time allocation
 - Life cycle, household structure and role
 - Temporal variation of feasible activities over the day
 - Distribution of travel levels of service during the day
- Increased Travel and Information Choices
 - "No travel" options (tele-commuting, tele-shopping, etc.)
 - Information causes changes in departure time, mode and route choice
 - Choice set formation

1.201J / 11.545J / ESD.210J Transportation Systems Analysis: Demand and Economics Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.