ASSESSING THE TRANSFER PENALTY: A GIS-BASED DISAGGREGATE MODELING APPROACH

Outline

- Objectives
- Prior Research
- Modeling Approach
- Data Issues
- Model Specifications
- Analysis and Interpretation
- Conclusions

Source:
Guo, Z and N.H.M. Wilson, "Assessment of the Transfer Penalty for Transit Trips: A GIS-based Disaggregate Modeling Approach." Transportation Research Record 1872, pp 10-18 (2004).
Guo, Z., "Transfers and Path Choice in Urban Public transport Systems." PhD Dissertation (MIT, 2008).

TRANSFERS ARE IMPORTANT TO PUBLIC TRANSPORT

Transfers are endemic in public transport
-- transfer: change of vehicle
-- public transport is unable to provide door-to-door service

Transfers are prevalent in major public transport networks
-- share of transfer trips in public transport
Boston: 43\% (CTPS 1991)
London: 50\% (LATS 2001)
New York: 33\% (NYMTC 1997/98)
Chicago: 50\%* (Crockett 2002)

TRANSFERS ARE NOT WELL ANALYZED

Understanding of the behavior is limited
-- how are transfers perceived by passengers?
-- how do transfers affect the performance of public transport?
Analysis methods are primitive
-- lack of detail to improve understanding and applications

Applications are sporadic and limited

-- timed transfer: focuses on transfer waiting time
-- under-evaluate the impact of transfers and the benefit of transferrelated investments

OBJECTIVES

- Improve our understanding of how transfers affect behavior
- Estimate the impact of each variable characterizing a transfer
- Identify transfer attributes which can be improved cost-effectively

PREVIOUS TRANSFER PENALTY RESULTS

Previous Studies	Variables in the Utility Function	Transfer Types (Model Structure)	Transfer Penalty Equivalence
Alger et al, 1971 Stockholm	Walking time to stop Initial waiting time Transit in-vehicle time Transit cost	Subway-to-Subway Rail-to-Rail Bus-to-Rail Bus-to-Bus	4.4 minutes in-vehicle time 14.8 minutes in-vehicle time 23.0 minutes in-vehicle time 49.5 minutes in-vehicle time
Han, 1987 Taipei, Taiwan	Initial waiting time Walking time to stop In-vehicle time Bus fare Transfer constant	Bus-to-Bus (Path Choice)	30 minutes in-vehicle time 10 minutes initial wait time 5 minutes walk time
Hunt, 1990 Edmonton, Canada	Transfer Constant Walking distance Total in-vehicle time Waiting time Number of transfers	Bus-to-Light Rail (Path Choice)	17.9 minutes in-vehicle time

PREVIOUS TRANSFER PENALTY RESULTS

(cont'd)

Previous Studies	Variables in the Utility Function	Transfer Types (Model Structure)	Transfer Penalty Equivalence
Liu, 1997 New Jersey, NJ	Transfer Constant In-vehicle time Out-of-vehicle time One way cost Number of transfers	Auto-to-Rail Rail-to-Rail (Modal Choice)	15 minutes in-vehicle time 1.4 minutes in-vehicle time
CTPS, 1997 Boston, MA	Transfer Constant In-vehicle time Walking time Initial waiting time Transfer waiting time Out-of-vehicle time Transit fare	All modes combined (Path and Mode Choice)	$12-15$ minutes in-vehicle time
Wardman, Hine and Stradling, 2001 Edinburgh, Glasgow,	Utility function not specified	Bus-to-Bus Auto-to-Bus Rail-to-Rail	$\mathbf{4 . 5}$ minutes in-vehicle time 8.3 minutes in-vehicle time 8 minutes in-vehicle time

PRIOR RESEARCH - A CRITIQUE

- Wide range of transfer penalty
- Incomplete information on path attributes
- Limited and variable information on transfer facility attributes
- Some potentially important attributes omitted

MODELING APPROACH

- Use standard on-board survey data including:
-- actual transit path including boarding and alighting locations
-- street addresses of origin and destination
-- demographic and trip characteristics
- Focus on respondents who:
-- travel to downtown Boston destinations by subway
-- have a credible transfer path to final destination

MODELING APPROACH

- Define transfer and non-transfer paths to destination from subway line accessing downtown area
- For each path define attributes:
-- walk time
-- in-vehicle time
-- transfer walk time
-- transfer wait time
- Specify and estimate binary logit models for probability of selecting transfer path

TWO OPTIONS TO REACH THE DESTINATION

MBTA SUBWAY CHARACTERISTICS

- Three heavy rail transit lines (Red, Orange, and Blue)
- One light rail transit line (Green)
- Four major downtown subway transfer stations (Park, Downtown Crossing, Government Center, and State)
- 21 stations in downtown study area
- Daily subway ridership: 650,000
- Daily subway-subway transfers: 126,000

THE MBTA SUBWAY IN DOWNTOWN BOSTON

Map of Boston downtown subway system removed due to copyright restrictions.

DATA ISSUES

- Data from 1994 MBTA on-board subway survey
- 38,888 trips in the dataset
- 15,000 geocodable destination points
- 6,500 in downtown area
- 3,741 trips with credible transfer option based on:
- closest station is not on the subway line used to enter the downtown area
- 67% of trips with credible transfer option actually selected non-transfer path
- 3,140 trips used for model estimation

VARIABLES

A Transit Path Variables

- Walk time savings: based on shortest path and assume 4.5 km per hour walk speed
- Extra in-vehicle time: based on scheduled trip time

B Transfer Attributes

- Transfer walk time
- Transfer wait time: half the scheduled headway
- Assisted change in level: a binary variable with value 1 if there is an escalator

VARIABLES (continued)

C. Pedestrian Environment Variables

- Land use: difference in Pedestrian Friendly Parcel (PFP) densities
- Pedestrian Infrastructure Amenity: difference in average sidewalk width
- Open Space: a trinary variable reflecting walking across Boston Common
- Topology: a trinary variable reflecting walking through Beacon Hill
D. Trip and Demographic Variables

THE SEQUENCE OF MODEL DEVELOPMENT

MODEL A: SIMPLEST MODEL

Specification

- Assume every transfer is perceived to be the same
- Only two variables
-- transfer constant
-- walk time savings

MODEL A RESULTS

Variables	Coefficients	t statistics
Transfer Constant	-2.39	-28.57
Walk Time Savings (minutes)	0.25	20.78
\# of Observations	3140	
Final log-likelihood	-1501.9	
Adjusted ρ^{2}	0.309	

Findings

- A transfer is perceived as equivalent to 9.5 minutes of walking time, although about 2 minutes of this total is not actually part of the transfer, but the path chosen (i.e., average extra in-vehicle time for the transfer path)

MODEL B: TRANSFER STATION SPECIFIC MODEL

Specification

- Assume each transfer station is perceived differently
- Variables are:
-- walk time savings
-- extra in-vehicle time
-- station-specific transfer dummies

MODEL B RESULTS

Variables	Model A		Model B	
	Coefficients	t statistics	Coefficients	t statistics
Transfer Constant	-2.39	-28.57	-1.39	-12.62
Walk Time Savings	0.25	20.78	0.29	19.54
Extra In-vehicle Time			-0.21	-10.68
Government Center			-1.21	-10.23
State Street		-1.41	-7.44	
Downtown Crossing	3140		3140	
\# of Observations				
Final log-likelihood	-1501.9		-1368.1	
Adjusted ρ^{2}	0.309	0.369		

MODEL B FINDINGS

- Improved explanatory power (over Model A)
- Transfer stations are perceived differently
- Park is the best (4.8 minutes of walk time equivalence)
- State is the worst (9.7 minutes of walk time equivalence)

MODEL C: TRANSFER ATTRIBUTES MODEL

Specification

- Transfer attributes affect transfer perceptions:
-- transfer walk time
-- transfer wait time
-- assisted change in level

MODEL C RESULTS

Variables	Model A		Model B		Model C	
	Coefficients	t statistics	Coefficients	t statistics	Coefficients	t statistics
Transfer Constant	-2.39	-28.57	-1.39	-12.62	-0.99	-6.99
Walk Time Savings	0.25	20.78	0.29	19.54	0.29	18.11
Extra In-vehicle Time			-0.21	-10.68	-0.20	-8.35
Government Center			-1.21	-10.23		
State Street		-1.41	-7.44			
Downtown Crossing			-1.09	-7.28	-1.13	-13.37
Transfer walking time				-0.16	-1.98	
Transfer waiting time				0.27	2.24	
Assisted level change					3140	
\# of Observations	3140		3140	-1334.32		
Final log-likelihood	-1501.9		-1368.1	0.385		
Adjusted ρ^{2}	0.369					

MODEL C FINDINGS

- Improved explanatory power (over Model B)
- Residual transfer penalty is equivalent to 3.5 minutes of walking time savings
- Transfer waiting time is least significant

MODEL D: COMBINED ATTRIBUTE \& STATION MODEL

Specification

- Combines the variables in Model B and C
- Estimates separate models for peak and off-peak periods

Nigel H.M. Wilson John Attanucci

MODEL D RESULTS

Variables	Model A	Model B	Model C	Model D	
	Coefficients	Coefficients	Coefficients	Peak	Off-peak
Transfer Constant Walk Time Savings Extra In-vehicle Time Government Center State Street Downtown Crossing Transfer walking time Transfer waiting time Assisted level change	$\begin{gathered} -2.39^{\star * *} \\ 0.25^{* * *} \end{gathered}$	$\begin{gathered} -1.39^{\star * *} \\ 0.29^{\star *} \\ -0.21^{* * *} \\ -1.21^{* * *} \\ -1.41^{* * *} \\ -1.09^{\star \star *} \end{gathered}$	$\begin{gathered} -0.99^{\star * *} \\ 0.29^{\star * *} \\ -0.20^{\star \star *} \\ \\ \\ -1.13^{\star * *} \\ -0.16^{* *} \\ 0.27^{\star *} \end{gathered}$	$\begin{gathered} -1.08^{\star \star *} \\ 0.32^{\star \star *} \\ -0.24^{\star *} \\ -1.28^{\star \star *} \\ -1.39^{\star \star *} \\ 0.39^{\star *} \end{gathered}$	$\begin{gathered} 0.22^{\star \star *} \\ -0.17^{* *} \\ -1.26^{*} \\ \\ -1.22^{\star * *} \\ -0.29^{\star * *} \\ 0.48^{\star \star *} \end{gathered}$
\# of Observations	3140	3140	3140	2173	967
Final log-likelihood	-1501.9	-1368.1	-1334.32	-868.44	-418.99
Adjusted ${ }^{\mathbf{2}}$	0.309	0.369	0.385	0.414	0.357

Note, ${ }^{* * *}: \mathrm{P}<0.001 ;{ }^{* *}: \mathrm{P}<0.05 ; \quad$ *: $\mathrm{P}<0.1$

MODEL D FINDINGS

- Improved explanatory power (over Model C)
- Government Center is perceived as worse than other transfer stations
- Residual transfer penalty in off-peak period at other transfer stations vanishes
- In the peak period model the transfer waiting time is not significant

MODEL E: PEDESTRIAN ENVIRONMENT MODEL

Specification

- Better pedestrian environment should lead to greater willingness to walk
- Add pedestrian environment variables to Model D

MODEL E RESULTS

Variables	Model A	Model B	Model C	Model D		Model E	
				Peak Hour	Non-Peak Hour	Peak Hour	Non-Peak Hour
Transfer Constant Walking Time Savings Extra In-vehicle Time Transfer walking time Transfer waiting time Assisted level change Government Center State Street Downtown Crossing Extra PFP density Extra sidewalk width Boston Common Beacon Hill	$\begin{gathered} -2.39^{* * *} \\ 0.25^{\star * *} \end{gathered}$	$\begin{gathered} -1.39^{\star \star *} \\ 0.29^{\star * *} \\ -0.21^{\star \star *} \\ \\ -1.21^{\star \star *} \\ -1.41^{\star \star *} \\ -1.09^{* * *} \end{gathered}$	$\begin{gathered} -0.99^{\star \star *} \\ 0.29^{\star * *} \\ -0.20^{\star *} \\ -1.13^{\star *} \\ -0.16^{\star *} \\ 0.27^{\star *} \end{gathered}$	$\begin{gathered} \hline-1.08^{\star \star *} \\ 0.32^{\star * *} \\ -0.24^{\star \star *} \\ -1.39^{\star \star *} \\ \\ 0.39^{\star \star} \\ -1.28^{\star \star *} \end{gathered}$	$\begin{gathered} 0.22^{\star * *} \\ -0.17^{* * *} \\ -1.22^{\star * *} \\ -0.29^{\star * *} \\ 0.48^{* * *} \\ -1.26^{*} \end{gathered}$	$\begin{gathered} -1.39^{\star \star \star} \\ 0.29^{\star \star *} \\ -0.24^{\star \star *} \\ -1.28^{\star \star *} \\ 0.39^{\star \star *} \\ -1.20^{\star \star *} \\ \\ \\ -0.03^{\star \star *} \\ 0.73^{\star \star *} \\ -0.73^{\star \star} \end{gathered}$	$\begin{gathered} 0.19^{* * *} \\ -0.16^{\star \star *} \\ -0.99^{\star \star *} \\ -0.27^{* * *} \\ 0.45^{\star} \\ -1.28^{\star *} \\ \\ -0.20^{\star *} \\ -0.03^{\star \star *} \\ 0.79^{\star * *} \\ -1.07^{* * *} \end{gathered}$
\# of Observations	3140	3140	3140	2173	967	2173	967
Final log-likelihood	-1501.9	-1368.1	-1334.32	-868.44	-418.99	-852.472	-402.975
Adjusted $\mathrm{\rho}^{2}$	0.309	0.369	0.385	0.414	0.357	0.425	0.376
Note, ***: $\mathrm{P}<0.001$; ${ }^{* *}$: $\mathrm{P}<0.05 ;{ }^{*}: \mathrm{P}<0.1$							

MODEL E FINDINGS

- Improved explanatory power (over Model D)
- Greater sensitivity to pedestrian environment in off-peak model
- Both Boston Common (positively) and Beacon Hill (negatively) affect transfer choices as expected
- Pedestrian environment variables can affect the transfer penalty by up to 6.2 minutes of walking time equivalence

ANALYSIS AND INTERPRETATION

- The transfer penalty has a range rather than a single value
- The attributes of the transfer explain most of the variation in the transfer penalty
- For the MBTA subway system the transfer penalty varies between the equivalent of 2.3 minutes and $\mathbf{2 1 . 4}$ minutes of walking time
- Model results are consistent with prior research findings

RANGE OF THE TRANSFER PENALTY

Model Number	Underlying Variables	Adjusted $\mathrm{p}^{\mathbf{2}}$	The Range of the Penalty (Equivalent Value of)
A	Transfer constant	0.309	7.5 minutes of walking time
B	Government Center Downtown Crossing State	0.369	4.8 ~ 9.7 minutes of walking time
C	Transfer constant - Transfer walk time - Transfer wait time - Assisted Level Change	0.385	$4.3 \sim 15.2$ minutes of walking time
D	Transfer constant - Transfer walk time - Transfer wait time - Assisted Level Change - Government Center	0.414 (Peak) 0.357 (Off-peak)	4.4 ~ 19.4 minutes of walking time (Peak) 2.3 ~ 21.4 minutes of walking time (Off-peak)

COMPARISON OF THE TRANSFER PENALTY WITH PRIOR FINDINGS

Studies	Alger et al 1971		Liu 1997	Wardman et al 2001	CTPS 1997	This Research
City	Stockholm		New Jersey	Edinburgh	Boston	Boston
Transfer Type	Subway	Rail	Subway	Rail	All modes	Subway
Value of the Transfer Penalty	4.4	14.8	1.4	8	12 to 18	$1.6 \sim 31.8$

* Minutes of in-vehicle time

TRANSFER PENALTY HAS GREAT VARIATION BY MOVEMENT

BOSTON FINDINGS: TRANSFER PENALTY IS HIGH

Subway

Commuter Rail

- Transfers are perceived very negatively by passengers

LONDON FINDINGS: TRANSFER PENALTY IS LOWER

One transfer equals 4.9 minutes of in-vehicle time (2.5 minutes of walking time)

Compare Boston subway with London Underground
-- transfer penalty is higher in Boston subway: $\mathbf{7 . 5}$ vs. 2.5 minutes of walking
-- but Boston subway has simple transfer environments
-- implies that Bostonians dislike transfers three times more than Londoners

BIG VARIATION ACROSS LONDON STATIONS

APPLICATION 1: MONITORING PASSENGER FLOW

Crowding is a big concern in the
 Underground

Current treatment of transfer

One transfer = 3.5 minutes invehicle time, uniform across system

Update the treatment to reflect station and movement differences

UPDATED PASSENGER FLOWS

Image removed due to copyright restrictions.

Current method underestimates passenger flows on the circumferential service due to the under-estimated transfer penalty in the Underground

APPLICATION 2: EVALUATING TRANSFER-RELATED PROJECTS

Image removed due to copyright restrictions.

CONCLUSIONS

Methodology

-- Boston: captures the trade-off between one transfer and saving walk time
-- London: correct prediction = 80\%

Behavior

-- quantification of transfer experience
-- average as well as variations (station, movement, trip, people)

Applications

-- monitoring system performance
-- project evaluation, prioritization, and justification

EGRESS MODAL CHOICES IN THREE STATIONS

Image removed due to copyright restrictions.

EGRESS PATH CHOICES FROM NORTH

Image removed due to copyright restrictions.

EGRESS STATION CHOICES FROM SOUTH

Image removed due to copyright restrictions.

POSSIBLE MODELING STRUCTURES

Image removed due to copyright restrictions.

SEQUENCE OF MODEL DEVELOPMENT

Image removed due to copyright restrictions.

POSSIBLE MODELING STRUCTURES

SEQUENCE OF MODEL DEVELOPMENT

Model B
Choice
specific
variables
\qquad

Time variables
$+$
Trip \& Personal variables

RESULTS: NORTH COMMUTER RAIL

Variables		MNL	
		Model A	Model B
Intercept			
Green Line		-3.45***	-4.86***
Orange Line		-3.36 ***	-4.72 ***
Travel Time Attributes (minutes)			
Walk Time (all three alternatives)		-0.20***	-0.21***
In-vehicle Time (2 transfer alternatives)		-0.08***	-0.07 *
Trip \& Personal Attributes (specific to non-transfer alternative)			
Fare Type: Monthly Pass			
Frequent Rider (>=3 days/week)			-0.81***
Reliability Sensitive (rating=1)			-0.56*
Reliability Insensitive (rating=5)			-1.08***
Scale			-0.23*
Transfer Penalty (minutes of walk)	To Green Line	17.3	23.1
	To Orange Line	16.80	22.5
Adjusted p^{2}		0.299	0.321

RESULTS: SOUTH COMMUTER RAIL

Variables		MNL	
		Model A	Model B
Intercept			
Transfer from Back Bay		-2.83 ***	-3.01 ***
Walk from South Station		-1.05 ***	-1.04 ***
Transfer from South Station		-4.49 ***	-4.69 ***
Travel Time Attributes (minutes)			
Walk Time (all four alternatives)		-0.33 ***	-0.33 ***
Subway In-vehicle Travel Time (2 alternatives)		-0.28 ***	0.29 ***
Trip \& Personal Attributes (2 alternatives) Fare Type: Monthly Pass			
			-1.21***
Frequent Rider (>=3 days/week)			0.76 **
Reliability Sensitive (rating=1)			-0.51
Reliability Insensitive (rating=5)			0.04
Transfer Penalty (minutes of walk)	Back Bay	8.51	9.0
	South Station	13.86	14.0
Adjusted ${ }^{\text {² }}$		0.498	0.511

TRANSFER PENALTIES ACROSS STATIONS

Average Transfer Penalty at Three Stations

Transfer Stations

TRANSFER PENALTIES ACROSS RIDER GROUPS

Nigel H.M. Wilson

MIT OpenCourseWare
http://ocw.mit.edu
1.201J / 11.545J / ESD.210J Transportation Systems Analysis: Demand and Economics Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

