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Solutions to quiz 1

Prepared by Margrét Vilborg Bjarnadóttir


(Bjarnadóttir, 2003, (Outline Kang, 2001))

X1, X2 are uniformly distributed between 0 and a. Let G(a) ∗ E[max(x1, x2)

3] and consider

G(a + �) when X1, X2 are uniformly distributed between 0 and a + �, where � is very small.


Suppose a < X2 ≈ a + � and 0 ≈ X1 ≈ a. Then we know that max(x1, x2) = x2. There

fore E[max(x1, x2)

3] ∗ E[x2
3]. Since X1 and X2 are independent, G(a + �) for this case can be


computed as follows:


� a+� 

G(a + �) = E[max(x1, x2)
3] = E[x2

3] = (x2)
3fX2 (x2)dx2 , 

a 

where fX2 (x2) is the probability density function of X2. Because X2 is uniformly distributed over 
(a, a + �], fX2 (x2) = a 

1 . Thus, 

1 
� a+� 

G(a + �) = (x2)
3 dx2 

a 

� �a+�1 1 4 = x 
� 4 2 

a 

=
1 
· 
1 � 

(a + �)4 − a 4
� 

� 4 

=
1 
· 
1 � 

4a 3� + 6a 2�2 + 4a�3 + �4
� 

� 4 

1 1 � 
3

� 
= · (4a � + o(�) , 

� 4 

where o(�) represents higher order terms of � satisfying lim��0 
o(
�
�) = 0 (“pathetic terms”). There

fore, G(a + �) � a3 as � � 0. 

By symmetry we have G(a + �) � a3 as � � 0 when 0 ≈ X2 ≈ a and a < X1 ≈ a + �. 

Finally, we do not have to compute G(a + �) for the case where a < X1 ≈ a + � and a < X2 ≈ a + � 
because the associated probability is negligible. 
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The following table summarizes G(a + �)’s.


Case

hline 0 ≈ X1 ≈ a, 0 ≈ X2 ≈ a


a < X1 ≈ a + �, 0 ≈ X2 ≈ a


0 ≈ X1 ≈ a, a < X2 ≈ a + �


a < X1 ≈ a + �, a < X2 ≈ a + �


Probability of a case 
a · a = ( a )2 

a+� a+� a+�


� a �a
· = a+� a+� (a+�)2 

a � �a · = a+� a+� (a+�)2 

� · � = ( � )2 
a+� a+� a+� 

G(a + �) given a case

G(a)


3a

3a

We do not care. 

�a 
+ o(�2) 

Using the total expectation theorem, we obtain 

� �2 
a 3 �a 3G(a + �) = G(a) + a + a 

a + � (a + �)2 (a + �)2 

� �2 

= G(a) 
a + 

a

� 
+ 2a 3 

(a + 
�a

�)2 + o(�2) 

� �2 

� G(a) 
a 

+ 2a 3 

(a + 
�a

�)2 . a + � 

From the formula of the sum of an infinite geometric series, we know 

a 1 � � �2 � �3 
= = 1 − + − + · · · . 

a + � 1 + � a a a a 

Ignoring higher order terms of �, we get 

a � 
� 1 − . 

a + � a 

This gives the following approximations: 

� �2 
� �2 �2a � 2� 2� 

� 1 − = 1 − + � 1 − , 
a + � a a a2 a 

�a � 
� 

a 
�2 

� 
� 

2� 
� 

� 2�2 � 
= � 1 − = − � . 

(a + �)2 a a + � a a a a2 a 

Therefore, we can rewrite G(a + �) as 

2� 3 � 2� 2G(a + �) � G(a) 1 − + 2a · = G(a) 1 − + 2a � . 
a a a 

Rearranging terms, we have 

G(a + �) − G(a) 2G(a) 
= − + 2a 2 . 

� a 
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If � � 0, we have the following differential equation: 

G∩(a) = − 
2G(a) 

+ 2a 2 . 
a 

Seeing the 2a2 term, a “judicious” guess for the form of G(a) is Ba3 (keeping in mind that G(0)=0 
and therefore there is no constant term in G(a)). Assuming G(a) = Ba3 we have G∩(a) = 3Ba2 . 
Plugging these values into our differential equation gives us: 

3Ba2 = −2Ba2 + 2a2 

→ 5B = 2 
→ B = 2 

5 

This gives us the following solution: 

G(a) ∗ E[max(x1, x2)
3] = 

2a3 

. 
5 

2 

(Bjarnadóttir, 2003) 
Let assume v4 is at some distance k from the given point, with out loss of generality, we can assume 
k = 1 (then we do not have to carry k through our calculations). Then we know that there are 
three other vehicles inside a circle of radius 1, which are uniformly distributed over the area of the 
circle. 

Let A be the event that v4 > 4v1 and let B be the event that v4 > 2v2. We want to find the 
joint probability of these events, that is P (A � B) = P (A) ∩ P (B|A). 

P(A) is the probability that at least one vechicle is within a circle of radius 4
1 . The compliment 

of A is the event that no vehicle is within radius 4
1 . For any one vehicle the probability of being 

outside a circle of radius 1 is (��12
−��(1/4)2 

= 15 Therefore P (A) = 1 − P (Ac) = 1 − (15 )3 = 721 
4 12�� 16 . 16 4096 

For event B ( v4 > 2v2 ) we need to have two vehicles within a circle of radius 2
1 . P (B|A) is 

the event that the second vehicle is inside of a circle of radius 1 given that the first vehicle is 2 
inside a circle of radius 4

1 . The compliment, P (Bc|A) is then the event that the second nearest 
vehicle is outside of circle of radius 1 1, given that the first one is within a circle of radius and2 4 
P (B|A) = 1 − P (Bc|A). 

Now P (Bc|A) = P (
P
B
(

c

A
�

) 
A) , where P (Bc � A) is the event that two vehicles are outside of 1

2 AND 

one vehicle inside of 1
4 . Therefore 

P (Bc � A) 3 · 1 · (3 )2 432 
P (Bc|A) = = 16 4 = 

P (A) 721 721
4096 

Now 
432 289 

P (B|A) = 1 − P (Bc|A) = 1 − = 
721 721 
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We then can put it all together:


721 289 289 
P (A � B) = P (A) ∩ P (B|A) = ∩ = � 0.071 

4096 721 4096 

3 

(Bjarnadóttir, 2003) 
(i) When considering the different probabilities for Mendel of entering in intervals of different 
lengths, we need to take into account random incidence: Mendel has 4 = 4 chance of entering 4+5+6 15 

5 6in an interval of length 4, 15 of entering in an interval of length 5 and 15 of entering in an interval 
of length 6. Given the Mendel enters in an interval of a certain length, his arrival is uniformly 
distributed over that interval. We can therefore compute the probability that he waits between 4 
and 5 minutes for the next train as follows: 

4 5 6 2P(Mendel waiting between 4 and 5 minutes)= 15 ∩ 0 + 15 ∩ 5
1 + 15 ∩ 6

1 
15 = 

(ii) If the Lemon Line became less variable and all intervals between trains were exactly 5 minutes, 
the probability would go from 2 to 1 , since Mendel would always arrive in an interval of length 5 15 5 
and therefore the chance to wait between 4 and 5 minutes is always 1/5. 

Intuitively, why does the answer move in that direction? (Barnett, 2003)

We see in the first part of the problem that the chance of waiting between 4 and 5 minutes is

higher (20%) given an interval of length 5 than either one of length 4 (0%) or of length 6 (16.7%).

Thus, if intervals of lengths 4 and 6 disappear in favor of 5’s, the chance of waiting between 4 and

5 minutes must go up. (The average wait goes down under the change, because the possibility of

waiting more than 5 minutes evaporates.)


4 

(Odoni, 2003) 
The small factory has 3 machines, therefore the total population is three. Our Birth-and-death 

chain has therefore only a 4 states, that is all machines can be running, one can be broken down, 
two can be broken down or all can be broken down. The following picture shows our queueing 
system. 
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1/3 2/9 1/9


0 1 2 3


1/2 1 1


We can now write our steady state equations: 

1 1
P0 =
 P13 2 
2
P1 = P2
9 
1
P2 = P3
9 
P0 + P1 + P2 + P3 = 1 

Which gives us: P0 = 243 = 162 = 36 and P3 = 445 , P1 445 , P2 445 
4 We can now find the expected number 445 .


of machines that are operating, which three (the total population) minus the expected number in

the system: 3 − L = 3 − (0 ∩ P0 + 1 ∩ P1 = 2 ∩ P2 + 3 ∩ P3) � 2.45 operating machines. 
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