Networks: Lecture 2

Amedeo R. Odoni

November 20, 2006

Outline

- Generic heuristics for the TSP
- Euclidean TSP: tour construction, tour improvement, hybrids
- Worst-case performance
- Probabilistic analysis and asymptotic result for Euclidean TSP [Separate handout]
- Extensions
- Reference: Sections 6.4.5-6.4.13 + Handouts

Node Covering (TSP, VRP, et al)

- Huge literature, endless applications
- Traveling Salesman Problem (TSP) is the prototypical "hard" problem
- Some applications:
_ Routing of all kinds
_ Job shop scheduling
_ Vehicle routing problem (VRP)
_ Dial-a-ride problem (DARP)
_ Electronics industry
_ Biotechnology
_ Air traffic control
_ Genomics

Solving the TSP

- Best existing exact algorithms can solve optimally problems with up to 15,000 points (as of 2001)
- Numerous heuristic approaches for good solutions to MUCH larger problems
- For practical purposes, heuristics are very powerful. A classification:
_ Tour construction
_ Tour improvement
_ Hybrid
- Analysis of heuristics:
_ Worst case _ Empirical
_ Asymptotic
_ Probabilistic

Heuristics: Euclidean TSP

The Nearest Neighbor Heuristic

Performance: Nearest Neighbor

$\frac{L(\text { NEARNEIGHBOR })}{L(T S P)} \leq \frac{1}{2}\left\lceil\log _{2} n\right\rceil+\frac{1}{2}$

- Poor performance in practice (+20\%)
- Can be improved through refinements (e.g., "likely subgraph")

Worst-case Performance:

 Insertion Heuristics- $\frac{L(\text { RANDOM INSERT })}{L(T S P)} \leq\left\lceil\log _{2} n\right\rceil+1$
- $\frac{L(\text { NEAR INSERT })}{L(T S P)}<2$
- $\frac{L(F A R \text { INSERT })}{L(T S P)} \quad=>$ Unknown
- $\frac{L(C H E A P ~ I N S E R T)}{L(T S P)}<2$

Empirical Performance: Insertion Heuristics

- In practice "Farthest Insertion" and "Random Insertion" (+9\%, +11\%) seem to perform better than "Cheapest" and "Nearest" (+16\%, +19\%)
- Can be further refined (e.g., though the Convex Hull heuristic)

The MST Heuristic for the TSP

Merging with a second copy of the MST

Improve Solution by Skipping Points Already Visited

$$
\begin{array}{ll}
L(M S T) \leq L(T S P-(l o n g e s t ~ e d g e ~ o f ~ T S P)) & <L(T S P) \\
& \Rightarrow \\
\Rightarrow & L(M S T-T O U R)=2 * L(M S T)<2 * L(T S P) \\
& \frac{L(M S T-T O U R)}{L(T S P)}<2
\end{array}
$$

The Christofides Heuristic: Step 1

The Christofides Heuristic: Step 2

The Christofides Heuristic: Step 3

Improve Solution by Skipping Points Already Visited

Worst-case Performance: The

 Christofides Heuristic$L(C H R I S T O F I D E S)=L(M S T)+L(M)$
But, $\quad L(M S T)<L(T S P)$
and $L(M) \leq L\left(M^{\prime}\right) \leq L(T S P) / 2$
($M^{\prime}=$ minimum length pairwise matching of odddegree nodes of MST using only links that are part of TSP)
$\Rightarrow \quad \frac{L(\text { CHRISTOFIDES })}{L(T S P)}<\frac{3}{2}$

A Worst-Case Example for the Christofides Heuristic

(mmodes)

A Worst-Case Example for the Christofides Heuristic (2)

$L($ Christofides $)=2 *{ }^{*}(1-\varepsilon)+m \approx 3^{*} m$

A Worst-Case Example for the Christofides Heuristic (3)

L(TSP) $=m+m-1+2 *(1-\varepsilon) \approx 2 * m+1$
Therefore:

$$
\frac{L(\text { CHRISTOFIDES })}{L(T S P)} \approx \frac{3 m}{2 m+1} \rightarrow \frac{3}{2} \text { as } m \rightarrow \infty
$$

The Convex Hull Heuristic: Euclidean Plane

Adding New Points

Convex Hull Heuristic (Euclidean TSP)

- Optimal TSP tour cannot intersect itself
- Therefore, points on the convex hull must appear in same order on optimal TSP tour
- Provides good starting point; for instance, improves insertion heuristics by $2-3 \%$, on average

The Savings Algorithm

The Savings Algorithm (2)

- Invented for vehicle routing; works well for TSP
- Connect every node to the origin ("depot") through a "round trip" (n-1 tours)
- Merge tours, one node at a time, by maximizing "savings" $s(i, j)=d(D, i)+d(D, j)-d(i, j)$
- Tours should not violate such constraints as:
_ Vehicle capacity
_ Maximum length of a tour
Maximum number of stops per tour
- $O\left(n^{3}\right)$
- Performs very well in practice; very flexible
- Li, F., B. Golden and E. Wasil (2005), "Very large-scale vehicle routing", Computers and Opers. Research

The Savings Algorithm (3)

Tour Improvement Heuristics: Node Insertion

$\cdot d(p, q)+d(j, i)+d(i, k) \quad$ vs. $\quad d(p, i)+d(i, q)+d(j, k)$

- $O\left(n^{2}\right)$ computational effort on each iteration

Tour Improvement Heuristics:
2-exchange (or "2-opt")

$\binom{n}{2}=\frac{n(n-1)}{2} \rightarrow O\left(n^{2}\right)$

Tour Improvement Heuristics:
3-exchange (or "3-opt")
$\xrightarrow[2-0 \text { opt really }]{\left\{\begin{array}{l}6-1 \\ 2-3 \\ 4-5\end{array}\right\}}$
$\left\{\begin{array}{l}6-3 \\ 4-1 \\ 2-5\end{array}\right\}\left\{\begin{array}{l}6-2 \\ 1-4 \\ 3-5\end{array}\right\}\left\{\begin{array}{l}6-3 \\ 4-2 \\ 1-5\end{array}\right\}\left\{\begin{array}{l}6-4 \\ 3-1 \\ 2-5\end{array}\right\}$
$\binom{n}{3} \rightarrow O\left(n^{3}\right)$

Tour Improvement Heuristics: Variable Depth Search

- Lin and Kernighan (1973)
- Use combinations of 2-opt and 3-opt searches
- Initially many "short-depth", later fewer
- Has been extended to "deeper" searches than 3-opt
- Numerous variations

