
1.203J, 6.281J, 15.073J, 16.76J, etc.
Logistical and Transportation Planning Methods

Some Important Heuristics for the TSP

We summarize below some of the principal characteristics of a number of
the best-known heuristic algorithms for the TSP. The worst-case results cited
apply to TSPs which have symmetrical distance matrices that satisfy the
triangular inequality, but some of the heuristics can also be used in problems that
do not satisfy these conditions. Additional details can be found in the following
three outstanding references:

Jiinger, Michael, G. Reinelt and G. Rinaldi, "The Traveling Salesman
Problem", Chapter 3 in Netzoork Models (Voliitne 7 of Handbooks in Operations
Research and Management Science series) M.0, Ball, T.L. Magnanti, C.L. Monma
and G. Nemhauser (eds.) Elsevier Science, Amsterdam (1995) pp. 225 -330.

Lawler, E.L., J.K. Lenstra, A.H.G. Rinnooy Kan and D.B. Shmoys (editors)
The Traueli~zg Salesir~ntz Problem, John Wiley and Sons, Chichester (1985).

Rosenkrantz, D.J., R.E. Stearns and P.M. Lewis, "An Analysis of Several
Heuristics fot the Traveling Salesman Problem", SIAM Journal of Compzltilzg, 6
(1977)pp. 563-581.

A. Construction Heuristics

1. Nearest Neirrhbor Heuristic:

Begin at a random node or at a pre-specified node and build a tour by
always moving to the nearest neighbor (among the nodes not yet connected to
the tour) of the latest node to join the tour. When all nodes have been connected
to the tour, join the last node to the origin to complete the tour.

Worst-case performance:

Computational Complexity: C(n2).

2. Insertion Heuristics:

All the heuristics in this class, initiate the tour-construction process with a
"seed tour" consisting either of a single node with a self-loop or of a loop
involving just two nodes. (The method of selecting these two initial nodes is
itself a matter of choice.)

It is useful to define the cost, c(i, k, j) of inserting a new node, k, in a tour
between two nodes, i and j, which were previously adjacent in the tour:

c(i, k, j) = d(i, k) + d(k, j) - d(i, j).

We then have:

2a. Random Insertion Heuristic: The next node to join the tour, T, is
selected randomly among the nodes still in (N - T) where N is the set of nodes of
the network. The location where the selected node is inserted is the one that
minimizes c(i, k, j). The procedure is repeated until all nodes have been inserted
into T.

2b. Nearest Insertion Heuristic: The next node to join the tour, T, is the
one that minimizes d(k, T) among all the nodes k E (N-T). (We use the notation
d(k, T) for the distance between a node k and the node in the set T which is
closest to k.) The location where the selected node is inserted is the one that
minimizes c(i, k, j). The procedure is repeated until all nodes have been inserted
into T.

2c. Farthest Insertion Heuristic: The next node to join the tour, T, is the
one that maximizes d(k, T) among all the nodes k E (N-T). The location where
the selected node is inserted is the one that minimizes c(i, k, j). The procedure is
repeated until all nodes have been inserted into T.

2d. Chea~est Insertion Heuristic: The next node to join the tour, T, is the
one that minimizes c(i, k, j) among all the nodes k E (N-T) and for all consecutive
pairs of nodes (i, j) E T. The location where the selected node is inserted is, of
course, the one that minimizes c(i, k, j). The procedure is repeated until all nodes
have been inserted into T.

Worst-case performance:

Computational complexity:

Heuristics 2a, 2b, and 2c are all o(n2); heuristic 2d is 0(n3) --but with careful
programming it can be 0(n2 log n).

3. Minimum S~anning Tree (MST) Heuristic:

(i) Find the MST of the n nodes to be visited.
(ii) Double all the edges of the MST to obtain an Eulerian graph; the Euler

tour of that graph is a solution to TSP.
(iii) Improve the tour obtained in (ii) by not re-visiting any node that has

already been visited.

Worst-case performance:

Computational complexity: O(n2).

4. Christofides Heuristic:

Please see section 6.4.6 in Larson and Odoni (pp. 398-404)

Worst-case performance:

Computational complexity: O(n3).

5. Convex Hull Heuristic:

Note: This is a heuristic for Euclidean TSPs only.

(i) Find the convex hull of the set of n nodes to be visited (please also see
section 6.4.7in Larson and Odoni). The convex hull provides the starting point
for the construction of the tour.

(ii) Use any insertion heuristic to add the rest of the nodes, one at a time,
to the tour.

Worst-case performance: Unknown.

Computational complexity: q n 3) if a cheapest insertion heuristic is used to add
points to initial (convex hull) tour; q n ?) if a nearest neighbor or farthest neighbor
or insertion heuristic is used to add points to initial (convex hull) tour

6. Savings Algorithm

Please see discussion of Clarke-Wright Savings Algorithm (Algorithm 6.7)
in section 6.4.12 in Larson and Odoni (pp. 417-422). This discussion refers to the
more general application of the Savings Algorithm to the Vehicle Routing
Problem (VRP). The TSP can, of course, be viewed as a special case of the VRP in
which any capacity restrictions have been removed. Thus, to apply the Savings
Algorithm to the TSP one proceeds until all nodes (i.e., points to be visited) have
been merged into a single tour.

Worst-case performance: Unknown.

Computational complexity: qn3).

B. Tour Improvement Heuristics

All tour improvement heuristics must begin with a complete TSP tour T,
which is used by the heuristics as the initial solution.

1. Improvement through Node Insertion

Take a node i, currently adjacent to nodes p and q in T. Attempt to ,

improve tour by placing i between two other nodes k and j which are currently
adjacent in T. Repeat for all pairs (k,j) until an improvement is found. Repeat for
all nodes in the tour until an improvement is found.

Computational complexity: q n 2) .

2. 	2-exchan~e (or 2-opt) Heuristic

Perform the following until failure for every node i occurs:

(i) Select a node i in the current T.

(ii) Examine all possible "2-opt" moves involving the edge between i and
its successor node in T. (Make sure to maintain a single connected tour.) If it is

possible to decrease the tour length this way, then choose the best such move and
call the resulting tour T. Otherwise, declare failure for node i.

Computational complexity: qn2).

3. 3-exchan~e (or 3-0

Same idea as 2-exchange heuristic but examines all possible "3-opt"
moves.

Computational complexity: q n 3) .

4. Variable D e ~ t h Search

This is also known as the "Lin-Kernighan Search Heuristic". It employs a
combination of "improvement by node insertion", "2-opt" and "3-opt" moves.
Occasionally may accept a tour modification that increases slightly the length of
the tour. Designed to make many changes initially and few later on. Many
variations of the heuristic exist.

Computational complexity: Depends on choices made with regard to depth of
search.

