Functions of Random Variables

Logistical and Transportation Planning Methods
Massachusetts Institute of Technology Fall 2006

4 Steps:

1. Define the Random Variables
2. Identify the joint sample space
3. Determine the probability law over the sample space
4. Carefully work in the sample space to answer any question of interest

4 Steps: Functions of R.V.s

1. Define the Random Variables
2. Identify the joint sample space
3. Determine the probability law over the sample space
4. Carefully work in the sample space to answer any question of interest

4a. Derive the CDF of the R.V. of interest, working in the original sample space whose probability law you know
4b Take the derivative to obtain the desired PDF

Response Distance of an Ambulance

1. R.V.;s
$0 \quad$ accident $\quad \mid \quad$ ambulance ${ }^{1}$
$X_{1}=$ location of the accident
$X_{2}=$ location of the ambulance
$D=$ response distance $=\left|X_{1}-X_{2}\right|$
2. Joint sample space is unit square in $X_{1} X_{2}$ plane
3. PDF over square is uniform

In previous problem, $\mathrm{E}[\mathrm{D}]=1 / 3$
What if we fix the location of the ambulance at $X_{2}=1 / 2$?

fixed location ambulance

$E[D]=1 / 4$, a 25% reduction

Rectangular Response Area

Scaling to Get Expected

 Travel Distance

Ratio of Manhattan to Euclidean Distance Metrics

1. Define R.V.'s

$$
\begin{aligned}
& D_{1}=\left|X_{1}-X_{2}\right|+\left|Y_{1}-Y_{2}\right| \\
& D_{2}=\sqrt{\left(X_{1}-X_{2}\right)^{2}+\left(Y_{1}-Y_{2}\right)^{2}} \\
& \text { Ratio }=R=D_{1} / D_{2}
\end{aligned}
$$

$\Psi=$ angle of directions of travel wrt straight line connecting $\left(X_{1}, Y_{1}\right) \&\left(X_{2}, Y_{2}\right)$

Directions of Travel

One possible minimum distance path

Directions of Travel

Directions of Travel

