1. The R.V.'s

$Y=$ distance from the center of the needle to closest of equidistant parallel lines $0<y<d / 2$
$\Phi=$ angle of needle wrt horizontal
$0<\phi<\pi$

2. Joint Sample Space

3. Joint Probability Distribution

Want $f_{Y, \Phi}(y, \phi)$
Think about that tricky phrase, "At random"
$\mathrm{f}_{\phi}(\phi)=1 / \pi \quad 0<\phi<\pi$
$f_{Y}(y)=2 / d \quad 0<y<d / 2$
Independence implies
$\mathrm{f}_{Y, \Phi}(y, \phi)=\mathrm{f}_{\Phi}(\phi) \mathrm{f}_{Y}(y)=$ constant $=2 /(\pi d)$

4. Working in the Joint Sample Space

4. Working in the Joint Sample Space

$$
\begin{aligned}
& P=\int_{0}^{\pi} d \phi \int_{0}^{(l / 2) \sin \phi} d y(2 /[\pi d]) \\
& P=(l /[\pi d]) \int_{0}^{\pi} d \phi \sin \phi=-(l /[\pi d])(-1-1) \\
& P=2 l /[\pi d]
\end{aligned}
$$

Bertrand's Paradox

Bertrand's Paradox: What is the probability that a random chord on this circle has length greater than $\sqrt{3}$?

Bertrand's Parodox: What is the probability that a random chord on this circle has length greater than $\sqrt{3}$?
Three correct answers: $1 / 3,1 / 4$ and $1 / 2$!!!!
Be very careful about that ambiguous word, "random". See text for a sample space, probability assignment argument.

Spin the Flashlight

1. R.V.': X, Θ

2. R.V.': X, Θ
3. Sample space for Θ. $[-\pi / 2, \pi / 2]$

4. R.V.': X, Θ
5. Sample space for Θ. $[-\pi / 2, \pi / 2]$
6. Θ uniform over $[-\pi / 2, \pi / 2]$

7. R.V.': X, Θ
8. Sample space for Θ : $[-\pi / 2, \pi / 2]$
9. Θ uniform over $[-\pi / 2, \pi / 2]$
10. (a) $F_{X}(x)=P\{X<x\}=P\{\tan \Theta<x\}=P\left\{\Theta<\tan ^{-1}(x)\right\}=1 / 2+(1 / \pi) \tan ^{-1}(x)$ (b) $f_{X}(x)=(d / d x) F_{X}(x)=1 /(\pi)\left(1+x^{2}\right) \quad$ all x

Cauchy pdf

Barriers to Travel

Perturbation Random Variables

Add a barrier to travel

Directions of travel

Add a barrier to travel

Directions of travel

$$
\mathrm{E}[D]=(1 / 3)\left[X_{0}+Y_{0}\right]
$$

$$
D^{\prime}=D+D_{e},
$$

$$
\mathrm{E}\left[D^{\prime}\right]=\mathrm{E}[D]+\mathrm{E}\left[D_{e}\right]
$$

$$
\mathrm{E}\left[D_{e}\right]=\mathrm{E}\left[D_{e} \mid D_{e}>0\right] \mathrm{P}\left\{D_{e}>0\right\}
$$

$$
P\left\{D_{e}>0\right\}=2(a b)\left(a\left[X_{0}-b\right]\right) /\left\{\left(x_{0} Y_{0}\right)\left(X_{0} Y_{0}\right)\right\}
$$

Add a barrier to travel

Directions of travel

$$
\mathrm{E}[D]=(1 / 3)\left[X_{0}+Y_{0}\right]
$$

$$
D^{\prime}=D+D_{e},
$$

$$
E\left[D^{\prime}\right]=E[D]+E\left[D_{e}\right]
$$

$b \quad X_{0}$ $\mathrm{E}\left[D_{e}\right]=\mathrm{E}\left[D_{e} \mid D_{e}>0\right] \mathrm{P}\left\{D_{e}>0\right\}$ $\mathrm{P}\left\{D_{e}>0\right\}=2(a b)\left(a\left[X_{0}-b\right]\right) /\left(X_{0} Y_{0}\right)\left(X_{0} Y_{o}\right)$
$\left\{D_{e} \mid D_{e}>0\right\}=2 \mathrm{MIN}\left[z_{1}, z_{2}\right]$ $\mathrm{E}\left[D_{e} \mid D_{e}>0\right]=(2 / 3) a$

Add 2 barriers to travel

Directions of travel

And what about grids and one way streets?

Two-Way Streets

Then, what about alternating one-way streets?

