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Announcements 

•	 PS #3 due tomorrow by 3 PM 
•	 Office hours – Odoni: Wed, 10/18, 2:30-4:30; 

next week: Tue, 10/24 
•	 Quiz #1: October 25, open book, in class; 

options: 10-12 or 10:30-12:30 
•	 Old quiz problems and solutions: posted Thu 

evening along with PS #3 solutions 
•	 Quiz coverage for Chapter 4: Sections 4.0 – 

4.6 (inclusive); Prof. Barnett’s lecture NOT 
included 



Lecture Outline 
•	 Remarks on Markovian queues 
•	 M/E2/1 example 
•	 M/G/1: introduction, epochs and transition 

probabilities 
•	 M/G/1: derivation of important expected values 
•	 Numerical example 
•	 Introduction to M/G/1 systems with priorities 

Reference: Section 4.7 

Variations and extensions of 
birth-and-death queueing systems 

•	 Huge number of extensions on the previous
models 

•	 Most common is arrival rates and service 
rates that depend on state of the system; 
some lead to closed-form expressions 

•	 Systems which are not birth-and-death, but 
can be modeled by continuous time, discrete 
state Markov processes can also be
analyzed [“phase systems”] 

•	 State representation is the key (e.g. M/Ek/1 or
more than one state variables – P.S. #3) 



M/G/1: Background 

•	 Poisson arrivals; rate λ 
•	 General service times, S; fS(s); E[S]=1/μ; σS 
•	 Infinite queue capacity 
•	 The system is NOT a continuous time Markov process 

(most of the time “it has memory”) 
•	 We can, however, identify certain instants of time 

(“epochs”) at which all we need to know is the number 
of customers in the system to determine the probability
that at the next epoch there will be 0, 1, 2, …, n 
customers in the system 

•	 Epochs = instants immediately following the completion 
of a service 

M/G/1: Transition probabilities for 
system states at epochs (1) 

N = number of customers in the system at a random 
epoch, i.e., just after a service has been completed 

N' = number of customers in the system at the 
immediately following epoch 

R = number of new customers arriving during the 
service time of the first customer to be served after 
an epoch 

N' = N + R – 1  if  N > 0 

N' = R	 if N = 0 
•	 Note: make sure to understand how R is defined 



Epochs and the value of R 

t1 t2 t3 t4 t5 t6 
t 

N Between t1 and t2, R=2 

Between t5 and t6, R=0 

M/G/1: Transition probabilities for 
system states at epochs (2) 

•	 Transition probabilities can be written in
terms of the probabilities: 

P[number of new arrivals during a service
time = r] = 

∞ (λt)r ⋅ e−λt 
α r = ∫ ⋅ f S (t) ⋅ dt for r = 0, 1, 2,...0 r! 

•	 Can now draw a state transition diagram at
epochs 



A Critical Observation 

•	 The probabilities P[N=n] of having n customers 
in the system at a random epochepoch are equal to the 
steady state probabilities, Pn, of having n 
customers in the system at any random time! 

•	 The PASTA property: “Poisson arrivals see time 
averages” 

•	 Can use simple arguments to obtain (as for 
M/M/1 systems):

P0 = 1- (λ / μ) = 1- ρ and E[B] = 1/(μ – λ) = 1/(1- ρ)


•	 Can also derive closed-form expressions for L, W, 
Lq and Wq 

Probability the Server is Busy 

•	 Suppose we have been watching the system for a long 
time, T. 

ρ, the utilization ratio, is the long-run fraction of 
time (= the probability) the server is busy; this means, 
assuming the system reaches steady state: 

ρ = 
amount of time server is busy 

= 
λ ⋅T ⋅ E[S] 

= λ ⋅ E[S] = λ 
T T μ 



Idle and Busy Periods; E[B] 
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Derivation of L and W: M/G/1 
(assumes FCFS) 

T = total amount of time a randomly arriving 
customer j will spend in the M/G/1 system 

T1 = remaining service time of customer 
currently in service 

T2 = the time required to serve the customers
waiting ahead of j in the queue 

T3 = the service time of j 

• Clearly:

T = T1 + T2 + T3


W = E[T] = E[T1] + E[T2] + E[T3]




Derivation of L and W: M/G/1 [2] 

•	 E[T3] = E[S] 
•	 Given that there are already n customers in the system 

when j arrives (and since one customer is being served 
while n–1 are waiting) 
E[T2 | n] = (n −1) ⋅ E[S] , n ≥ 1


E[T2 | n] = 0, n = 0

•	 Thus, 

⎡	 ⎤ 
E[T2 ] = ∑ E[T2 | n] ⋅ Pn = ∑ (n −1) ⋅ E[S] ⋅ Pn = E[S] ⋅⎢ ∑nPn − ∑ Pn ⎥ 

n n≥1 ⎣⎢n≥1 n≥1 ⎦⎥ 

E[T2 ] = E[S] ⋅ L − E[S] ⋅ ρ 

Derivation of L and W: M/G/1 [3] 

•	 From our “random incidence” result (2.66): 

E[T | n] =
σ S
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E[T1 | n] = 0, n = 0


•	 Thus, giving: 

E[T ] = 
n

E[T | n] ⋅ P = 
n≥1 
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⋅ ρ1 ∑ 1 n ∑	 n 



Derivation of L and W: M/G/1 [4] 

• So we finally have:

L = λW (Little’s theorem) (1)

W = E[T] = E[T1] + E[T2] + E[T3] (2)

and solving (1) and (2), we obtain:


L = ρ + 
ρ 2

2
+ 

(1 
λ
− 

2 

ρ
⋅σ 
) 

S 
2
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1 ρ 2 + λ2 ⋅σ S 
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W = +
μ 2λ(1 − ρ ) 

Expected values for M/G/1 
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Dependence on Variability (Variance) 

of Service Times 

Expected delay 

ρ = 1.0 

Demand 

Runway Example 

•	 Single runway, mixed operations 
•	 E[S] = 75 seconds; σS = 25 seconds 

μ = 3600 / 75 = 48 per hour 
•	 Assume demand is relatively constant for

a sufficiently long period of time to have
approximately steady-state conditions 

•	 Assume Poisson process is reasonable
approximation for instants when demands 
occur 



Estimated expected queue length 
and expected waiting time 

Lq Lq Wq Wqλ (per hour) ρ 
(% change) (seconds) (% change) 

30 0.625 0.58 69 
30.3 0.63125 0.60 3.4% 71 2.9% 

36 0.75 1.25 125 
36.36 0.7575 1.31 4.8% 130 4% 

42 0.875 3.40 292 
42.42 0.88375 3.73 9.7% 317 8.6% 

45 0.9375 7.81 625 
45.45 0.946875 9.38 20.1% 743 18.9% 

Can also estimate PHCAP ≅ 40.9 per hour 

M/G/1 system with non-preemptive 
priorities: background 

• 

• 

• 

• 
• 

• 
• 

r classes of customers; class 1 is highest 
priority, class r is lowest 
Poisson arrivals for each class k; rate λk 

General service times, Sk , for each class; 
fSk(s); E[Sk]=1/μk; E[Sk2] 
FIFO service for each class 
Infinite queue capacity for each class 
Define: ρk = λk /μk 
Assume for now that: ρ = ρ1 + ρ2 +….+ ρr <1 



A queueing system with r priority 
classes 
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