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Lecture Outline 
• M/G/1: a simple example 
• Introduction to systems with priorities 
• Representation of a priority queuing system 
• The M/G/1 non-preemptive priority system 
• An important optimization theorem 
• … and an important corollary 
• Brief mention of other priority systems 
• Bounds for G/G/1 systems 

Reference: Chapter 4, pp. 222-239 (just skim
Sections 4.8.2 and 4.8.4) 



Expected values for M/G/1 
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Runway Example 

•	 Single runway, mixed operations 
•	 E[S] = 75 seconds; σS = 25 seconds 

μ = 3600 / 75 = 48 per hour 
•	 Assume demand is relatively constant for a 

sufficiently long period of time to have 
approximately steady-state conditions 

•	 Assume Poisson process is reasonable 
approximation for instants when demands 
occur 



Estimated expected queue length 
and expected waiting time 

Lq Lq Wq Wqλ (per hour) ρ 
(% change) (seconds) (% change) 

30 0.625 0.58 69 
30.3 0.63125 0.60 3.4% 71 2.9% 

36 0.75 1.25 125 
36.36 0.7575 1.31 4.8% 130 4% 

42 0.875 3.40 292 
42.42 0.88375 3.73 9.7% 317 8.6% 

45 0.9375 7.81 625 
45.45 0.946875 9.38 20.1% 743 18.9% 

Can also estimate PHCAP ≅ 40.9 per hour 

Announcements 

•	 Quiz #1: October 25, open book, in class; 
quiz begins at 10:00, ends at 12:30; pick 
any TWO hours (10-12 or 10:30-12:30) 

•	 Odoni: Office hrs Tu 10-12 
•	 Old quiz problems and solutions: posted 
•	 Quiz coverage for Chapter 4: Sections 4.0 

– 4.6 (inclusive) 



Background and observations 

•	 W, L, Wq and Lq are not affected by the order of 
service, as long as the queue discipline does
not give priority to certain classes of 
customers 

•	 WFIFO = WSIRO = WLIFO (what about the
corresponding variances?) 

•	 However, we may be able to influence W in 
systems where customers are assigned to 
priority classes, if different classes have 
different service-time characteristics 

•	 Preemptive vs. non-preemptive priority 
•	 Preemptive-resume vs. preemptive-repeat 

M/G/1 system with non-preemptive 
priorities: background 

• 

• 

• 

• 
• 

• 
• 

r classes of customers; class 1 is highest 
priority, class r is lowest 
Poisson arrivals for each class k; rate λk 

General service times, Sk , for each class; 
fSk(s); E[Sk]=1/μk; E[Sk2] 
FIFO service for each class 
Infinite queue capacity for each class 
Define: ρk = λk /μk 
Assume for now that: ρ = ρ1 + ρ2 +….+ ρr <1 



A queueing system with r priority 
classes 
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Expected time in queue of customer of 
class k who has just arrived at system 

Wqk = W0 + ∑ 
k 1 

⋅ Lqi + 
k 

∑
−1 1 
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i =1 μi i =1 μi


W0 = expected remaining time in service of the customer who is 
occupying the server when the new customer (from class k) arrives 

Lqi = expected no. of customers of class i who are already waiting 
in queue at the instant when the newly arrived customer (from class 
k) arrives 

Mi = expected number of customers of class i who will arrive while 
the newly arrived customer (from class k) is waiting in queue 



Expressions for the constituent parts 
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Lqi = λi ⋅Wqi (2) 

Mi = λi ⋅Wqk (3) 

A closed-form expression 

k k −1

Wqk = W0 + ∑ ρi ⋅Wqi + Wqk ⋅ ∑ ρi [from (1), (2) and (3)]
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and solving (4) recursively, for k=1, k=2,….., we obtain (5): 
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Minimizing total expected cost 

ck = cost per unit of time that a customer of class k 
spends in the queuing system (waiting or being served) 

• Suppose we wish to minimize the expected cost (per 
unit of time) of the total time that all customers spend in 
the system: 

r r r

C = ∑ci ⋅ Li = ∑ci ⋅ ρi + ∑ci ⋅ λi ⋅Wqi (6)


i =1 i =1 i =1


• For each class k compute the ratio 
fk	 = 

ck = ck ⋅ μkE[Sk ] 

Optimization Theorem and a Corollary 

•	 Theorem: To minimize (6), priorities should be 
assigned according to the ratios fk : the higher 
the ratio, the higher the priority of the class. 

•	 Corollary: To minimize the total expected time 
in the system for all customers, priorities 
should be assigned according to the expected 
service times for each customer class: the 
shorter the expected service time, the higher 
the priority of the class.  



Cost inflow and outflow in a 
priority queuing system 
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A generalization 

• Let p be an integer between 1 and r such that 

ρ1 + ρ2 +….+ ρp <1 while    ρ1 + ρ2 +….+ ρp + ρp+1 ≥ 1 

• Then customers in classes 1 through p experience 
steady-state conditions, while those in p+1 through r 
suffer unbounded in-system (or waiting) times 

• Customers in classes 1 through p occupy the server a 
fraction ρk of the time each (k = 1, 2, …, p); customers in 
class p+1 occupy the server a fraction 1- ap ;and the other 
classes do not have any access 

• The expression (5) for Wqk can be modified accordingly 
by writing the correct expression for W0 in the numerator  



Generalized expression 
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Other priority systems 

•	 Simple closed-form results also exist for 
several other types of priority systems; 
examples include: 
_	 Non-preemptive M/M/m queuing systems with r classes 

of customers and all classes of customers having the 
same service rate μ 

_	 Preemptive M/M/1 queuing systems with r classes of 
customers and all classes of customers having the 
same service rate μ (see below expression for Wk) 

Wk = 
(1 μ) for k = 1, 2,......, r where ak = ∑ 

k 
ρi(1− ak −1)(1 − ak )	 i =1 



A general upper bound for G/G/1 
systems 

• A number of bounds are available for very general 
queueing systems (see Section 4.8) 

• A good example is an upper bound for the waiting time at 
G/G/1 systems: 
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where X and S are, respectively, the r.v.’s denoting inter-
arrival times and service times 

• Under some fairly general conditions, such bounds can 
be tightened and perform extremely well 

Better bounds 

for a (not so) special case


• For G/G/1 systems whose inter-arrival times have the 
property that for all non-negative values of t0, 

1E[X − t0 | X > t0 ] ≤
λ (what does this mean, intuitively?) 

it has been shown that: 
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• Note that the upper and lower bounds in (1) differ by, 
at most, 1/λ and that the percent difference between 
the upper and lower bounds decreases as ρ increases! 


