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Lecture Outline 
•	 A fundamental result for queueing networks 
•	 State transition diagrams for Markovian 

queueing systems and networks: examples 
•	 Examples 
•	 Dynamic queueing systems and viable 

approaches 
•	 Qualitative discussion of behavior 

Reference: Sections 4.10, 4.11 + material in 
handout 



A result which is important in analyses 

of queueing networks


Let the arrival process at a M/M/m queueing
system with infinite queue capacity have 
parameter λ. Then, under steady state 
conditions (λ<mμ) the departure process from
the queueing system is also Poisson with 
parameter λ. 

Implication: greatly facilitates analysis of open 
acyclic networks consisting of M/M/m queues 
with infinite queue capacities. 

The bad news: result holds only under exact set 
of conditions described above. 

Open acyclic network of M/M/. 
systems 
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State transition diagrams for 
queuing systems and networks 

•	 When external arrivals are Poisson and 
service times are negative exponential, many 
complex queueing systems and open acyclic 
queueing networks can be analyzed, even 
under dynamic conditions, through a
judicious choice of state representation. 

•	 This involves writing and solving (often 
numerically) the steady-state balance
equations or the Chapman-Kolmogorov first-
order differential equations. 

•	 The “hypercube model” (Chapter 5 of Larson 
and Odoni) is a good example. 

Example 1: Two M/M/1 Queuing Systems, 
Each with Finite Queue Capacity 

One server; 

neg. exp’l; μ 1 

One server; 

neg. exp’l; μ 2 

No queuing 
space 

No queuing 
space 

Poisson 
arrivals; λ 

Note: The queuing system on the right may “block” the one on 
the left. 



Example 2: M/Ek/1 System, with 
system capacity for total of N users 

See distributed notes. 

Example 3: Two Types of Users 
and Non-Preemptive Priorities 

Neg’ve exp’l service;  
μ 1 

μ 2 

Type 1 customers; 

Poisson arrivals; 

rate λ1 

Type 2 customers; 

Poisson arrivals; 

rate λ2 

Type 1 customers have 
non-preemptive priority 

See distributed notes. 



Comparison of August Weekday Peaking 
Patterns 

1993 vs. 1998 (3 Hour Average) 
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Operations 

Two common “approximations” (??) 
for dynamic demand profiles 

1.	 Find the average demand per unit of time 
for the time interval of interest and then 
use steady-state expressions to compute 
estimates of the queuing statistics. 
[Problems?] 

2.	 Subdivide the time interval of interest into 
periods during which demand stays 
roughly constant; apply steady-state 
expressions to each period separately. 
[Problems?] 



Problems 

with the Approximate Methods


•	 Problems with Approach 1: 
1.	 For cases in which demand varies significantly (e.g., 

>10% from overall average value) the delay estimates 
can be VERY poor 

2.	 Will underestimate overall average delay, possibly by a 
lot 

•	 Problems with Approach 2: 
1.	 May not have ρ < 1, for some intervals; then what? 
2.	 Time to reach “steady state” is large for values of ρ 

which are close to 1; therefore “steady state”
expressions may be very poor approximations when 
intervals are relatively short 

3.	 Approach does not take into consideration the
“dynamics” of the demand profile  

The Two Viable Approaches 

1.	 Simulation: 
•	 High level of detail 
•	 May be only viable alternative for complex 

systems 
•	 Statistical significance of results? 

2.	 Numerical solution of equations
describing the evolution of queueing
system over time: 

•	 Increasingly practical 
•	 May provide lots of information, such as Pn(t) 



Dynamic Behavior of Queues 

1. The dynamic behavior of a queue can be complex and 
difficult to predict 

2. Expected delay changes non-linearly with changes in 
the demand rate or the capacity 

3. The closer the demand rate is to capacity, the more 
sensitive expected delay becomes to changes in the 
demand rate or the capacity 

4. The time when peaks in expected delay occur may lag 
behind the time when demand peaks 

5. The expected delay at any given time depends on the 
“history” of the queue prior to that time 

6. The variance (variability) of delay also increases when 
the demand rate is close to capacity 

The dynamic behavior of a queue; expected delay 
for four different levels of capacity 
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Two Recent References on Numerical 

Methods for Dynamic Queueing Systems


•	 Escobar, M., A. R. Odoni and E. Roth, “Approximate 
Solutions for Multi-Server Queueing Systems with 
Erlangian Service Times”, with M. Escobar and E. Roth, 
Computers and Operations Research, 29, pp. 1353-1374, 
2002. 

•	 Ingolfsson, A., E. Akhmetshina, S. Budge, Y. Li and X. 
Wu, “A Survey and Experimental Comparison of Service 
Level Approximation Methods for Non-Stationary M/M/s 
Queueing Systems”, Working Paper, U. of Alberta. 
http://www.bus.ualberta.ca/aingolfsson/working_papers.htm 
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