
1.204 Lecture 10

Greedy algorithms:

K k (it l b d ti)
Knapsack (capital budgeting)

Job scheduling

Greedy method

•	 Local impprovement method
–	 Does not look at problem globally
–	 Takes best immediate step to find a solution
–	 Useful in many cases where

•	 Objectives or constraints are uncertain, or
•	 An approximate answer is all that’s required

–	 Generally O(n) complexity, easy to implement and interpret
results

• Often requires sorting the data first, which is O(n lg n)
–	 In some cases, greedy algorithms provide optimal solutions

(shortest paths, spanning trees, some job scheduling
problems)

•	 In most cases they are approximate algorithms
•	 Sometimes used as a part of an exact algorithm (e.g., as a

relaxation in an integer programming algorithm)

1

2

General greedy algorithm

// Pseudocode

public solution greedy(problem) {

solution= empty set;

problem.sort(); // Usually place elements in order

for (element: problem) {

if (element feasible and appears optimal)

solution= union(solution, element);

return solution;

}

Some greedy algorithms sort, some use a heap, some don’t need
to sort at all.

Greedy knapsack problem

We have n objects, each with weight wi and profit pi .
The knapsack has capacity M

Mxw
ts

xp i
ni

i

≤∑

∑
<≤

..

max
0

The knapsack has capacity M.

niwp
x

Mxw

ii

i

i
ni

i

<≤≥≥
<=≤

≤∑
<≤

0,0,0
10

0

Greedy knapsack algorithm

Algorithm chooses element with highest value/weight
ratio first, the next highest second, and so on until it
reaches the capacity of the knapsack.
This is the same as a gradient or derivative method.

Knapsack: integer or not?

Let M= 1.
Integer solution is {2, 3}, an unexpected result in some contexts.
Greedy solution is {1, 98% of 2}.
If problem has hard constraints, need integer solution.
If constraints are fuzzy, greedy solution may be better.

3

Knapsack problems

•	 Truck packing: integer knapsack
–	 Packing problem in 2 and 3 dimensions is extension Packing problem in 2 and 3 dimensions is extension

•	 Investment program:
–	 Greedy knapsack at high level
–	 Can be integer knapsack at individual transaction level
–	 (Highway investment or telecom capital investment programs

often handled as integer problem, with occasionally hard-to-
interpret results)

–	 Used to train telecom execs for spectrum auction
•	 Interactions between projects:

–	 Greedy can be extended to handle interactions between small
numbers of projects (that can be enumerated)

–	 Integer program handles this explicitly

Greedy knapsack code, p.1

public class Knapsack {

private static class Item implements Comparable {

public double ratio; // Profit/weight ratio

public int weight;

public Item(double r, int w) {

ratio = r;

weight = w;

}

public int compareTo(Object o) {

Item other = (Item) o;

if (ratio > other ratio) if (ratio > other.ratio) // Descending sort // Descending sort

return -1;

else if (ratio < other.ratio)

return 1;

else

return 0;

}

}

4

t

Greedy knapsack code, p.2

public static double[] knapsack(Item[] e, int m) {

int upper = m; // Knapsack capacity

// 0-1 answer array: 1 if item in knapsack 0 if not // 0-1 answer array: 1 if item in knapsack, 0 if not

double[] x= new double[e.length];

int i;

for (i= 0; i < e.length; i++) {

if (e[i].weight > upper)

break;

x[i]= 1.0;

upper -= e[i].weight;

}}

if (i < e.length) // If all items not in knapsack

x[i]= (double) upper/ e[i].weight; // Fractional item

return x;

}

Greedy knapsack code, p.3

public static void main(String[] args) {

Item a = new Item(2.0, 2);

Item b = new Item((1.5,, 4););

Item c = new Item(2.5, 2);

Item d = new Item(1.66667, 3);

Item[] e = { a, b, c, d };

Arrays.sort(e);

int m = 7;

System.out.println("Capacity: " + m);

double[] projectSet= knapsack(e, m);

double cumProfit= 0.0;

f (i t i 0 i l h i) { for (int i= 0; i < e.length; i++) {

System.out.println(…); // See Java code

cumProfit+= projectSet[i]*e[i].weight*e[i].ratio;

}

System.out.println("Cumulative benefit: " + cumProfit);

}

5

Greedy knapsack output

Capacity: 7

i: ratio: 2.5 wgt: 2 profit: 5.0 in? 1.0

i: ratio: 2.0 wgt: 2 profit: 4.0 in? 1.0

i: ratio: 1.67 wgt: 3 profit: 5.0 in? 1.0

i: ratio: 1.5 wgt: 4 profit: 6.0 in? 0.0

Cumulative benefit: 14.0

(Roundoff errors omitted)

This greedy example yields an integer solution. Most don’t:

Run knapsack() with m= 6 or 8 or …

Greedy job scheduling

•	 We have a set of n jobs to run on a processor (CPU) or machine
•	 Each job i has a deadline di >=1 and profit pi >=0
•	 There is one processor or machine
•	 Each job takes 1 unit of time (simplification)
•	 We earn the profit if and only if the job is completed by its deadline

–	 “Profit” can be the priority of the task in a real time system that discards
tasks that cannot be completed by their deadline

•	 We want to find the subset of jobs that maximizes our profit

•	 This is a restricted version of a general job scheduling problem, which
is an integer programming problem

–	 Example use in telecom engineering and construction scheduling
–	 Many small jobs, “profit” proportional to customers served
–	 This is then combined with integer programming solution for big jobs

•	 Greedy also used in how many machines/people problems (hw 1)
–	 Buy versus contract

6

Greedy job scheduling example

Number of jobs n=5. Time slots 1, 2, 3. (Slot 0 is sentinel)j ()

Job (i) Profit Deadline Profit/Time
A 100 2 100
B 19 1 19
C 27 2 27
D 25 1 25
EE 1515 33 1515

Greedy job scheduling algorithm

•	 Sort jobs by profit/time ratio (slope or derivative):
–	 A (deadline 2), C (2), D (1), B (1), E (3)A (deadline 2), C (2), D (1), B (1), E (3)

•	 Place each job at latest time that meets its deadline
–	 Nothing is gained by scheduling it earlier, and scheduling it

earlier could prevent another more profitable job from being
done

–	 Solution is {C, A, E} with profit of 142

C (27)()

A (100) E (15)

0 1 2 3
Time D, B infeasible

– This can be subproblem: how many machines/people needed

7

Greedy job data structure

•	 Simple greedy job algorithm spends much timeSimple greedy job algorithm spends much time
looking for latest slot a job can use, especially as
algorithm progresses and many slots are filled.
–	 n jobs would, on average, search n/2 slots
–	 This would be an O(n2) algorithm

•	 By using our set data structure, it becomes
nearly O(n)nearly O(n)
–	 Recall set find and union are O(Ackermann’s function),

which is nearly O(1)
–	 We invoke n set finds and unions in our greedy

algorithm

Simple job scheduling: O(n2)

public static int[] simpleJobSched(Item[] jobs) {

int n= jobs.length;

int[] jobSet= new int[n];

boolean[] slot= new boolean[n];

for (int i= 1; i < n; i++) {

for (int j= jobs[i].deadline; j > 0; j--) {

if (!slot[j]) {

slot[j]= true;

jobSet[j]= i;j [j] ;

break;

}

}

}

return jobSet;

}

8

Fast job scheduling (almost O(n))

•	 We use i to denote time slot i
– At the start of the method, each time slot i is its own set

•	 There are b time slots, where b= min{n, max(di)}
–	 Usually b= max(di), the latest deadline

•	 Each set k of slots has a value F(k) for all slots i in set
k
–	 This stores the highest free slot before this time
–	 F(k) is defined only for root nodes in sets

Job scheduling algorithm

•	 Initially all slots are free
– We have b+1 sets corresponding to b+1 time slots i 0 ≤ i ≤ bWe have b+1 sets corresponding to b+1 time slots i, 0 ≤ i ≤ b
–	 Slot 0 is a sentinel
–	 Initially F(i)= i for all i

•	 We will use parent p[i] to link slot i into its set
–	 Initially p[i]= -1 for all i
–	 Parent of root is negative of number of nodes in set

•	 To schedule job i with deadline di:
–	 “Find” root of tree containing slot min(n, di)

• Usually this is just slot di

–	 If root of i’s set is j, then F(j) is latest free slot, provided F(j) ≠ 0
•	 After using slot F(j), we combine (“set union”) set having

root j with set having slot F(j) -1

9

Job scheduling example

Free Free
F(j), j is root

x x x= usedx x x x

j j jj j j – any noddej j j j
All in same set can be root of set

Job scheduling algorithm operation

10

5

pr e;

 new

Job sequence code, p.1

public class JobSeqFast {

private static class Item implements Comparable {

private int profit;

ivate int deadlinprivate int deadline;

private String name;

public Item(int p, int d, String n) {

profit= p;

deadline= d;

name= n;

}

public int compareTo(Object o) {

Item other = (Item) o;

if (profit > other.profit) // Descending sort

return -1;

else if (profit < other.profit)

return 1;

else

return 0;

}

} // Add getXXX() and setXXX() methods for completeness

Job sequence code, p.2

public static int[] fjs(Item[] jobs, int b) {

int n= jobs.length;

int[] j= new int[n]; // Profit max jobs, in time order

Set jobSet Set(b);Set jobSet = new Set(b);

int[] f = new int[b]; // Highest free slot, job due at i

for (int i = 0; i < b; i++)

f[i] = i; // Sentinel at jobs[0]

for (int i = 1; i < n; i++) { // Jobs in profit order

int q = jobSet.collapsingFind(Math.min(n, jobs[i].deadline));

if (f[q] != 0) { // If free slot exists

jj q[q] = i; // Add jjob in that slot

int m = jobSet.collapsingFind(f[q] - 1); // Find earlier slot

jobSet.weightedUnion(m, q); // Unite sets

f[q] = f[m]; // In case q is root, not m

}

}

return j; // Jobs in optimal set

} // More comments in download code

11

Job sequence code, p.3
public static void main(String args[]) {

Item sentinel= new Item(0, 0,”s”);// Don’t sort-leave in place

Item a = new Item(100, 2, “a”); // Also create b, c, d, e

Item[] jobs = { sentinel, a, b, c, d, e };

Arrays sort(jobs 1 jobs length-1); // Sort descending Arrays.sort(jobs, 1, jobs.length-1); // Sort descending

int maxD= -1; // Maximum deadline

for (Item i: jobs)

if (i.deadline > maxD)

maxD= i.deadline;

maxD++;

int bb= Math.min(maxD, jobs.length);

int[] j= fjs(jobs, bb);

System.out.println("Jobs done:");

for (int i= 1; i < maxD; i++) {

if (j[i]>0) {

System.out.println(" Job "+ jobs[j[i]].name +

" at time "+ i);

} // And compute and output total jobs, total profit

Job sequence example output

Jobs done:

Job c at time 1

Job a at time 2

Job e at time 3

Number of jobs done: 3, total profit: 142

12

Summary

•	 This job scheduling special case solvable with greedy
algorithmalgorithm
–	 We revisit more general version with dynamic programming

•	 Capital planning problems often solvable with greedy
algorithm

•	 Other greedy algorithms
–	 Spanning trees (next time)
–	 Shortest paths (in two lectures)
–	 Other job scheduling problems (e.g. min time schedule)
–	 Graph coloring heuristic
–	 Traveling salesperson heuristic (2-opt, 3-opt)

• Used as part of simulated annealing
•	 Greedy algorithms are fast and relatively simple

–	 Consider them as parts of more complex solutions, or
–	 As approximate solutions

13

MIT OpenCourseWare
http://ocw.mit.edu

1.204 Computer Algorithms in Systems Engineering
Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/terms
http://ocw.mit.edu

