1.204 Lecture 11

Greedy algorithms: Minimum spanning trees

Minimum spanning tree

- If G is an undirected, connected graph, a subgraph T of G is a spanning tree iff T is a tree with n nodes (or, equivalently, n-1 arcs)
- A minimum spanning tree is the spanning tree T of G with minimum arc costs

Figure by MIT OpenCourseWare.

Applications of minimum spanning trees

- Building wiring, mechanicals
- Water, power, gas, CATV, phone, road distribution networks
- Copper (conventional) phone networks
- MST algorithms not needed, done heuristically
- Wireless telecom networks
- Cell tower connectivity with microwave 'circuits'
- Cost is not a function of distance, but reliability is
- East-west links preferred to north-south (ice, sun,...)
- Topography matters: DEM data
- Move to fiber optics as better technology
- Problem is to have a cost-effective, reliable network
- Not to find the minimum spanning tree
- System engineer looks at entire issue
- MST is one component of a broader solution

Prim's algorithm

- Greedy method to build minimum spanning tree
- Start at an arbitrary node (root)
- The set of arcs selected always form a tree T
- Initially the tree \mathbf{T} is just the root. No arcs added to it yet.
- The next arc (u, v) to be included in T is:
- Minimum cost arc such that
- Both nodes u and v are not in T already
- Add arc (u, v) and node v to T
- Mark node v as being in T, or visited (u is already in the tree)
- Tu\{(u,v)\} is now the new tree T
- End when all nodes in tree have been visited, or
- Equivalently, when (n-1) arcs have been put in the spanning tree

Prim's algorithm example

Figure by MIT OpenCourseWare.

Standard Prim: data members, constructor

```
public class Prim{ | Assumes connected graph; not checked
    private int nodes; /| Assumes consecutive node numbers
    private int[] head;
    private int[] to;
    private int[] dist;
    private int[] P; |/ Predecessor node back to root
    private boolean[] visited; /l Has node been visited
    private int MSTcost;
    Prim(int n, int[] h, int[] t, int[] d) {
        nodes = n; |/ Or set nodes= head.length-1
        head = h;
        to = t;
        dist = d;
    }
```


Standard Prim: prim(), p. 1

```
public int prim(int root) {
    P = new int[nodes]; || Predecessor node in MST
    visited = new boolean[nodes]; I| Has node been visited
    for (int i = 0; i < nodes; i ++) { |l Initialize
        P[i] =-1; |/ No predecessor on path
    }
    visited[root] = true; I| Initialize root node
    |/ Continued on next slide
```


Standard Prim: prim(), p. 2

```
for (int i = 0; i < nodes-1; i ++) { | Add nodes-1 arcs
    int minDist = Integer.MAX_VALUE;
    i nt nextNode = - 1; /| Next node to be added to MST
    i nt pred = - 1; || Predecessor of next node added to MST
    l/ Find node w/ min distance via arc from already visited set
    for (int node = 0; node < nodes; node+t) {
        if (visited[node])
            for (int arc = head[node]; arc < head[node + 1]; arct+) {
            int dest = to[arc];
            if (!visited[dest] && dist[arc] < minDist) {
                minDist = dist[arc];
                nextNode = dest;
                pred = node;
            }
        }
    }
    visited[nextNode] = true;
    P[nextNode] = pred;
    MSTcost += mi nDist; }
return MSTcost;}
```


Standard Prim: print(), main()

```
public void print() {
    System.out.println("i \tP");
    for (int i = 0; i < nodes; i ++) {
        if (P[i] == - 1)
                System.out.printIn(i + "\t-");
            else
            System.out.printIn(i + "\t" + P[i]);
    }
    System.out.printIn("MST cost: " + MSTcost);
}
public static void main(String[] args) {
    |/ Create test data (H&S p. 237-see download)
    Prim p = new Prim(nodes, hh, tt, dd);
    p.prim(root);
    p.print();
}
```


Prim's algorithm code, standard version, output

```
i P
O
1 2
2 3
3 4
4
5 0
6 1
MST cost: 99
```


Node numbers start at 0, not 1, compared to first example

Better Prim algorithm

- In each node iteration in the standard version:
- We go through the arcs out of every visited node each time a node is added to the tree, looking for the shortest arc from any node
- This is a lot of repetitive work: We look at each arc about $\mathrm{n} / 2$ times to see if it's the shortest, and it almost never is
- Standard Prim is O(na), for number of nodes n and arcs a
- If we keep the arcs out of visited nodes in a heap, we can just add arcs from a newly visited node to the heap, an $O(\lg n)$ operation, rather than the $O(n)$ standard scan
- In each iteration we then delete the shortest arc from the heap:
- If its destination has been visited, ignore it and delete the next arc from the heap
- Otherwise, add the arc to the MST
- This is $O(a \lg n)$, where a is the number of arcs
- Complexity proof easy except whether to use ' $\lg \mathrm{n}$ ' or ' \lg a'
- Since ' n ' and 'a' usually proportional, it's not a major issue
- Also, sorting to create the network takes O(a Ig a) steps

PrimHeap: arc class

```
public class MSTArc implements Comparable {
    int from; |/ Package access
    int to; // Package access
    int dist; // Package access
    public MSTArc(int f, int t, int d) {
        from= f;
        to= t;
        dist=d;
    }
    public String tostring() {
        return (" from: " + from+ " to: " + to + " dist: " + dist);
    }
    public int compareTo(Object o) {
        MSTArc other = (MSTArc) 0;
        if (dist > other.dist) |/ Ascending sort with
            return-1; I/ max heap to get mi n arc
        else if (dist < other.dist)
            return 1;
        else
        return 0;
} }
```


PrimHeap: data members, constructor

```
public class PrimHeap { /| Assumes connected graph; not checked
    private int nodes; |/ Assumes consecutive node numbers
    private int arcs;
    private int[] head;
    private int[] to;
    private int[] dist;
    private boolean[] visited; /| Has node been visited in Prim
    private int MSTcost:
    private Heap g;
    private MSTArc[] inMST; l/ Arcs in MST
    PrimHeap(int n, int a, int[] h, int[] t, int[] d) {
        nodes = n;
        arcs= a;
        head = h;
        to = t;
        dist = d;
        g= new Heap(arcs);
        inMST= new MSTArc[nodes];
}
```


PrimHeap: prim()

```
public int prim(int root) {
    visited = new boolean[nodes];
    MSTArc inArc= null;
    int k=0; ll Index of arcs in MST
    visited[root] = true; || |nitialize root node
    for (int arc= head[root]; arc< head[root+1]; arct+)
        g.insert(new MSTArc(root, to[arc], dist[arc]));
    for (int i = 0; i < nodes-1; i ++) { | | Add (nodes-1) arcs
        do { /| Find shortest arc to node not yet visited
            inArc= (MSTArc) g.delete();
        } while (visited[inArc.tol);
        inMST[k++] = inArc;
        int i nNode= inArc.to;
        visited[inNode] = true;
        MSTcost t= inArc.dist;
        for (int arc= head[inNode]; arc< head[inNode+1]; arc++)
            g.insert(new MSTArc(i nNode, to[arc], dist[arc]));
    }
                    l/ O(a | g n)
    return MSTcost;
}
```


PrimHeap: print(), main()

```
public void print() {
    System.out.println("Arcs in MST");
    for (int i = 0; i < nodes-1; i ++) {
        System.out.printIn(inMST[i]);
    }
    System.out.printIn("MST cost: " + MSTcost);
}
public static void main(String[] args) {
    |/ Create test data (H&S p. 237)-see download
    PrimHeap p = new PrimHeap(nodes, arcs, hh, tt, dd);
    p.prim(root);
    p.print();
}
```


Prim's algorithm code, heap version, output

```
Arcs in MST
    from: 0 to: 5 dist: 10
    from: 5 to: 4 dist: 25
    from: 4 to: 3 dist: 22
    from: 3 to: 2 dist: 12
    from: 2 to: 1 dist: 16
    from: 1 to: 6 dist: 14
MST cost: g9
```


Node numbers start at 0, not 1, compared to first example

Kruskal's algorithm

- A different greedy method to build minimum spanning tree:

```
Tree T i s empty;
Heap A contains all arcs, from lowest to highest cost
While (T has fewer than n-1 arcs) && (A has more arcs) {
    Delete arc (v,w) from A
    If arc (v,w) does not create a cycle in T
            Add arc (v,w) to T
    Else
        Discard arc (v,w)
```

- To detect cycles, we need to know if the origin and destination nodes of the candidate entering arc are already connected
- Doing this efficiently is key to Kruskal's algorithm
- We place connected nodes in the same Set
- The arcs will be a forest (set of disconnected subtrees) until the end
- We place the arcs in a Heap
- We only need the minimum arc in each iteration, not a complete sort

Kruskal's algorithm example

Figure by MIT OpenCourseWare.

Kruskal: data members, constructor

```
public class Kruskal { |/ Assumes connected graph; not checked
    private int nodes; /| Assumes consecutive node numbers
    private int arcs;
    private MSTArc[] inMST; |/ Arcs in MST
    private int MSTcost;
    private Heap g;
    private Set s;
    Kruskal(int n, int a, MSTArc[] arclist) {
        nodes = n;
        arCS = a;
        inMST= new MSTArc[nodes];
        s= new Set(nodes);
        g= new Heap(arclist);
    }
```


Kruskal: kruskal()

```
    public void kruskal() {
        int i= 0; /| Index in inMST array where arcs are placed
        for (int arc= 0; arc< <arcs; arct+) {
            MSTArc d= (MSTArc) g.delete();
                int j = s.collapsingFind(d.from);
                int k= s.collapsingFind(d.to);
                if (j ! = k) {
                        inMST[i+t]= d;
                        MSTcost t= d.dist;
                        s. weightedUnion(j, k);
            }
            if (i == nodes - 1)
                break;
    }
    }
|/ print() and main() same as PrimHeap (except call kruskal() in main)
|/ MSTArc class same as in PrimHeap
|/ Once you're comfortable with the MST codes, move them to Graph class
|| KruskalAdjArray class in download uses adjacency array
```


Kruskal's algorithm code, output

```
Arcs in MST
    from: 0 to: 5 dist: 10
    from: 3 to: 2 dist: 12
    from: 1 to: 6 dist: 14
    from: 1 to: 2 dist: 16
    from: 3 to: 4 dist: 22
    from: 4 to: 5 dist: 25
MST cost: g9
```


Node numbers start at 0 , not 1 , compared to first example

Improving Kruskal: Boruvka steps

Figure by MIT OpenCourseWare.

Summary: Minimum spanning trees

- Prim:
- Without heap: $\mathbf{O (n a)}$, where n is number of nodes
- With heap: $O(a \lg n)$, where a is number of arcs
- Kruskal
- Standard: $O(a \lg n)$, where a is number of arcs
- Randomized: $O^{\prime}(n+a)$, where O^{\prime} is ' $h i g h$ probability' running time of random element
- See text, p. 53-54
- Prim with heap and standard Kruskal are usual implementation choices
- Fast, straightforward
- Add these to your Graph class if you wish
- Use symmetric directed graph in implementation
- Minor changes to constructor for add'l data members

MIT OpenCourseWare
http://ocw.mit.edu

1.204 Computer Algorithms in Systems Engineering

Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

