1.204 Lecture 13

Dynamic programming:
 Method
 Resource allocation

Introduction

- Divide and conquer starts with the entire problem, divides it into subproblems and then combines them into a solution - This is a top-down approach
- Dynamic programming starts with the smallest, simplest subproblems and combines them in stages to obtain solutions to larger subproblems until we get the solution to the original problem
- This is a bottom-up approach
- Dynamic programming is used much more than divide and conquer
- It is more flexible and controllable
- It is more efficient on most problems since it must consider far fewer combinations

Principle of optimality

- "Principle of optimality":
- In an optimal sequence of decisions or choices, each subsequence must also be optimal
- For some problems, an optimal sequence may be found by making decisions one at a time and never making a mistake
- True for greedy algorithms (except label correctors)
- For many problems it's not possible to make stepwise decisions based only on local information so that the sequence of decisions is optimal.
- One way to solve such problems is to enumerate all possible decision sequences and choose the best
- Dynamic programming can drastically reduce the amount of computation by avoiding sequences that cannot be optimal by the "principle of optimality"

Project selection example

- Suppose we have:
- \$4 million budget
- 3 possible projects (e.g. flood control)
- Each funded at $\$ 1$ million increments from $\$ 0$ to $\$ 4$ million
- Each increment produces a different marginal benefit
- Dynamic programming problems are usually discrete, not continuous
- We want to find the plan that produces the maximum benefit
- Stages are the number of decisions to be made
- We have 3 stages, since we have 3 projects
- States are the number of distinct possibilities
- At each stage there are 5 states (\$0, 1, 2, 3, 4 million)

Project selection formulation

- We build a multistage graph to represent this problem:
- Source node at start of graph, representing 'null' initial stage
- Set of nodes at each stage for each state
- Sink node at end of graph, which is a collapsed representation of the final state
- Each node characterized by V(i,j):
- $V(i, j)$ is value (benefit) obtained up to (but not including) stage i by committing j resources
- Each node also stores its predecessor node in P(i)
- Each arc is characterized by $E(m, n)$:
- $E(m, n)$ is value obtained by spending n resources on project m

Project selection data

Project 0		Project 1		Project 2	
Investment	Benefit	Investment	Benefit	Investment	Benefit
0	0	0	0	0	0
1	6	1	5	1	1
2	8	2	11	2	4
3	8	3	16	3	5
4	10	4	17	4	6

- In theory, projects could have dependencies, but in practice it's an improbable model. In the example above:
- Project 1's benefits could depend on project 0 investment
- But not on project 2 investment
- Project 2's benefits could depend on total project 0 and 1 investment
- But not on either individually
- (There are some chip power management graphs with such dependencies)

Dynamic programming graph: feasible

Dynamic programming graph: feasible

	$\begin{gathered} V(2,0) \\ 6 \end{gathered}$		
	$\begin{gathered} V(2,1) \\ 7 \end{gathered}$		V(3,4)
	$\begin{gathered} V(2,2) \\ 8 \end{gathered}$		(11)
	$\begin{gathered} \mathrm{V}(2,3) \\ (9) \end{gathered}$		
	$\begin{array}{r} V(2,4) \\ (10) \end{array}$		
	2		3
Project 1 decisions	I	Project 2 decisions	1

Dynamic programming graph: feasible

Solution

- Generate graph in forward direction:
- Start at source node
- Compute V(i,j) and $E(m, n)$ as graph is built
- Keep track of predecessor $P(i)$ of each node that yields highest V(i,j)
- This eliminates non-optimal subsequences ("pruning")
- Eliminate infeasible arcs and nodes as graph is built
- Rule is easy: Check budget constraint at each node; do not generate arcs or nodes that would violate it
- End when sink node is reached from all nodes of previous stage
- Construct solution by tracing back from sink to source using predecessor variable

Multistage graph problem characteristics

- Multistage graph is the standard DP first example
- Graph is reduced by applying feasibility constraint to eliminate many combinations
- Can't exceed resource limit
- Each stage is independent of all previous stages
- How you got to V(i,j) doesn't matter
- This limits the combinatorial aspect of the original problem
- A naïve approach would have looked at all project combinations
- Principle of optimality:
- "In an optimal sequence of decisions or choices, each subsequence must also be optimal"
- In our example subsequences are optimal:
- Node 0 to node 2 (trivially)
- Node 0 to node 2 to node 10
- Node 0 to node 2 to node 10 to node 11 (full sequence)

Complexity of multistage graph

- Complexity of well-behaved multistage graph:
- M projects or stages
- At each stage, there are $\sim \mathrm{n}^{2} / 2$ comparisons to find $\mathrm{V}(\mathrm{i}, \mathrm{j})$ from the incoming arcs
- Where \mathbf{n} is number of resource levels
- This is $\mathrm{O}\left(\mathrm{Mn}^{2}\right)$
- Horowitz and Sahni call it O(M+a)
- Where a is number of arcs since they assume the graph has already been built and is available as input
- Complexity of worst case:
- Worst case:
- Different resource levels in each project, so number of nodes increases at each stage
- High constraint (large resource limit), so no elimination of nodes
- Number of nodes doubles in each stage
- This is $O\left(2^{n}\right)$
- Thus, complexity is $\mathrm{O}\left(\min \left(M n^{2}, 2^{n}\right)\right)$

Dynamic programming 'curses’

- Dynamic programming (DP) isn't natural for most problems
- Most dynamic programming problems are $\mathbf{O}\left(2^{n}\right)$
- Stages and states have 'curse of dimensionality':
- Stages and states can explode combinatorially
- Challenge in DP formulation is to avoid or limit the curse...
- Multistage graph is easiest
- We'll do a job scheduling DP next
- Another example of using the multistage graph model
- And then it gets harder...
- We'll do a set-based DP model for a knapsack problem
- Sets are "standard model" for complex DP

Multistage graph Java implementation

- Build graph going forward
- Don't need graph data structure
- Don't need to create or store arcs
- All information can be stored in nodes
- Store predecessor of each node (implicit arc)
- Source, next set of nodes and sink are special cases
- Read off solution going backward from sink
- Follow predecessors from sink to source
- Subtract cumulative resources, profits at each step (arc) to recover the decision on each project
- Allocate $\mathbf{n + 1}$ nodes per stage if resource limit= \mathbf{n}
- If $\mathrm{n}=4$, need 5 nodes for resource level 0, 1, 2, 3, 4
- Nested Node class holds profit, resource, predecessor
- Java garbage collector will clean up Nodes not on optimal subsequences
- No 'predecessor' will refer to them

MultistageGraph

```
public class MultiStageGraph {
    private static class Node {
        private int projNbr; /| Project number
        private int cumResource; || Resource allocated so far
        private int cumProfit; /l Profit so far
        private Node predecessor; / / Previous node in graph
        public Node(int proj, int res, int prof, Node p) {
            projNbr= proj;
            cumResource= res;
            cumProfit= prof;
            predecessor= p;
        }
    }
    private int numProj; I| No of projects
    private int n; || Max units of resource + 1
    private Node root; |/ First node in graph
    private Node sink; /| Last node in graph
    public MultiStageGraph(int np, int n) {
        this.numProj = np;
        this.n = n; I| root, sink null initially
    } || See download for get, set...
```


MultistageGraph: buildGraph()

```
public void buildGraph(int[][] p) { || Profit by project
    |/ Store previous stage nodes; need at next stage
    Node[] prevStage = new Node[n];
    l| Store current stage nodes
    Node[] currStage = new Node[n];
    |/ Stage O start node, units so far 0, profit so far 0
    root = new Node(0, 0, 0, null);
    Node current Node= null;
    || Project (stage) l start nodes as special case,
    |/ since they have single arcs back to root
    for (int i = 0; i < n; i ++) {
            |/ Stage l start node has stage O profit
            currentNode = new Node(1, i, p[0][i], root);
            prevStage[i] = currentNode;
    }
```


MultistageGraph: buildGraph() 2

```
|| Stage 2 start nodes thru stage M-1 start nodes
for (int i = 2; i < numProj; i ++) {
    |/ Loop, giving O-> n resources to project
    for (int j = 0; j < n; j ++) {
        currentNode = new Node(i, j, 0, null);
        currStage[j] = currentNode;
        for (int k = 0; k <= j; k++) { |/ Arcs from prev stage
            Node pastNode = prevStage[j - k];
            int profit=p[i-1][k];
            int cumProfit = profit + pastNode.cumProfit;
            if (cumProfit >= current Node.cumProfit) {
                current Node. cumProfit=cumProfit;
                currentNode. predecessor=pastNode;
            }
        }
    }
    |/ Copy current node array into previous node array
    for (int j = 0; j< n; j++) {
        prevStage[j] = currStage[j];
    }
}
```


MultistageGraph: buildGraph() 3

```
|/ Create the sink, an 'artificial' project M
sink = new Node(numProj + 1, n-1, 0, null);
|/ Mth project, n units resource, O profit
for (int i = 0; i < n; i+t) {
    int j= n-1-i; /| Apply max units possible to M-1 project
    Node pastNode = prevStage[i];
    int profit= p[numProj-1][j];
    int cumProfit = profit + past Node.cumProfit;
            if (cumProfit >= sink.cumProfit) {
                sink.cumResource= j + pastNode.cumResource;
                sink.cumProfit= cumProfit;
                sink. predecessor= pastNode;
            }
    }
    return;
} l/ End buildGraph()
```


MultistageGraph: backwardPass()

```
public int backwardPass() {
    System.out.println("Problem solution:");
    System.out.printIn(" Total profit: " + sink.cumProfit);
    System.out.println(" Total units: " + sink.cumResource+"\n");
    Node next= sink;
    Node current= sink. predecessor;
    while (current != null) {
        System.out.printIn("Project: " + current.projNbr);
        |/ Difference in units is project units assigned
        int units= next.cumResource - current.cumResource;
        |/ Difference in profit is project profit
        int profit= next.cumProfit - current.cumProfit;
        System.out.println(" Units: " + units);
        System.out.println(" Profit: " + profit);
        next= current;
        current = current. predecessor;
    }
    return sink.cumProfit;
}
|/ Better i mplementation would return 2-D array of (resource,
// profit) for each project
```


MultistageGraph: main()

```
public static void main(String[] args) {
    int numProjects= 3;
    int maxResource= 4;
    int[][] p2={{0,6,8,8,10}, /| Project 0 profits
            {0,5,11,16,17}, /| Project 1 profits
            {0,1,4,5,6},}; l/ Project 2 profits
    |/ Increment maxResource: e.g., if maxResource=4,
    |/ we have 5 decision levels ( 0, 1, 2, 3,4)
    MultiStageGraph g2=
        new MultiStageGraph(numProjects, ++maxResource);
    g2.buildGraph(p2);
    int totalProfit= g2.backwardPass();
    System.out,println("Total profit: " + totalProfit);
}
```


Summary

- Dynamic programming key concepts
- Stages: Decision points
- States: Decision options
- Principle of optimality
- "In an optimal sequence of decisions or choices, each subsequence must also be optimal"
- Solution approach: create solution graph
- Eliminate infeasible combinations at each stage
- Prune suboptimal combinations at each stage
- Track predecessor of optimal subsequences to each stage
- (Can generate graph going forward or backward)
- In most problems, DP is a heuristic solution approach
- Eliminate/prune unlikely combinations but not provably suboptimal

MIT OpenCourseWare
http://ocw.mit.edu

1.204 Computer Algorithms in Systems Engineering

Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

