
1.204 Lecture 13 

Dynamic programming:

Method
Method


Resource allocation


Introduction 

•	 Divide and conqquer starts with the entire pproblem,,  divides it 
into subproblems and then combines them into a solution 
–	 This is a top-down approach 

•	 Dynamic programming starts with the smallest, simplest 
subproblems and combines them in stages to obtain 
solutions to larger subproblems until we get the solution to 
the original problem 
–	 This is a bottom-up approach 

•	 Dynamic programming is used much more than divide 
and conquer 
–	 It is more flexible and controllable 
–	 It is more efficient on most problems since it must consider far 

fewer combinations 
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Principle of optimality 

•	 “Principple of opptimalityy”: 
–	 In an optimal sequence of decisions or choices, each


subsequence must also be optimal

–	 For some problems, an optimal sequence may be found by 

making decisions one at a time and never making a mistake 
•	 True for greedy algorithms (except label correctors) 

–	 For many problems it’s not possible to make stepwise 
decisions based only on local information so that the 
sequence of decisions is optimalsequence of decisions is optimal. 

•	 One way to solve such problems is to enumerate all possible 
decision sequences and choose the best 

•	 Dynamic programming can drastically reduce the amount of 
computation by avoiding sequences that cannot be optimal by the 
“principle of optimality” 

Project selection example 

•	 Suppppose we have: 
–	 $4 million budget 
–	 3 possible projects (e.g. flood control) 

•	 Each funded at $1 million increments from $0 to $4 million 
•	 Each increment produces a different marginal benefit 

–	 Dynamic programming problems are usually discrete, not 
continuous 

•	 We want to find the plan that produces the maximum 
benefit 

•	 Stages are the number of decisions to be made 
–	 We have 3 stages, since we have 3 projects 

•	 States are the number of distinct possibilities 
– At each stage there are 5 states ($0, 1, 2, 3, 4 million) 
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Project selection formulation

• We build a multistage graph to represent this problem:g g p p p
– Source node at start of graph, representing ‘null’ initial stage
– Set of nodes at each stage for each state
– Sink node at end of graph, which is a collapsed representation 

of the final state
• Each node characterized by V(i,j):

– V(i,j) is value (benefit) obtained up to (but not including) stage i 
by committing j resources

– Each node also stores its predecessor node in P(i)
• Each arc is characterized by E(m,n):

– E(m,n) is value obtained by spending n resources on project m

Project selection data

Investment Benefit Investment Benefit Investment Benefit
Project 0 Project 1 Project 2

• In theory, projects could have dependencies, but in practice 
it’s an improbable model. In the example above:
– Project 1’s benefits could depend on project 0 investment

0 0 0 0 0 0
1 6 1 5 1 1
2 8 2 11 2 4
3 8 3 16 3 5
4 10 4 17 4 6

– Project 1 s benefits could depend on project 0 investment
• But not on project 2 investment

– Project 2’s benefits could depend on total project 0 and 1 
investment

• But not on either individually
• (There are some chip power management graphs with such 

dependencies)
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Dynamic programming graph: feasible
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Dynamic programming graph: feasible 
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Solution 

•	 Generate gg praph in forward direction: 
–	 Start at source node 
–	 Compute V(i,j) and E(m,n) as graph is built 
–	 Keep track of predecessor P(i) of each node that yields highest 

V(i,j) 
• This eliminates non-optimal subsequences (“pruning”) 

–	 Eliminate infeasible arcs and nodes as graph is built 
•	 Rule is easy: Check budget constraint at each node; do not 

d  h  ld  i l  igenerate arcs or nodes that would violate it 
–	 End when sink node is reached from all nodes of previous 

stage 
•	 Construct solution by tracing back from sink to source 

using predecessor variable 
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Multistage graph problem characteristics 

• Multistage graph is the standard DP first example 
– Graph is reduced by applying feasibility constraint to eliminateGraph is reduced by applying feasibility constraint to eliminate 

many combinations 
•	 Can’t exceed resource limit 

– Each stage is independent of all previous stages 
•	 How you got to V(i,j) doesn’t matter 
•	 This limits the combinatorial aspect of the original problem 
•	 A naïve approach would have looked at all project combinations 

• Principle of optimality: 
– “In an optimal sequence of decisions or choices, eachan optimal sequence of decisions or choices, eachIn


subsequence must also be optimal”

– In our example subsequences are optimal: 

•	 Node 0 to node 2 (trivially) 
•	 Node 0 to node 2 to node 10 
•	 Node 0 to node 2 to node 10 to node 11 (full sequence) 

Complexity of multistage graph 

• Complexity of well-behaved multistage graph: 
– M projects or stages 
– At each stage there are n2/2 comparisons to find V(i j) from At each stage, there are ~n2/2 comparisons to find V(i,j) from 

the incoming arcs 
•	 Where n is number of resource levels 

– This is O(Mn2) 
– Horowitz and Sahni call it O(M+a) 

•	 Where a is number of arcs since they assume the graph has 
already been built and is available as input 

• Complexity of worst case: 
– Worst case:Worst case: 

•	 Different resource levels in each project, so number of nodes 
increases at each stage 

•	 High constraint (large resource limit), so no elimination of nodes 
•	 Number of nodes doubles in each stage 

– This is O(2n) 
• Thus, complexity is O( min( Mn2, 2n) ) 
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namic isn t natural for most

Dynamic programming ‘curses’ 

•	 Dynamic programming (DP) isnprogramming (DP) ’t natural for most Dy 
problems 
–	 Most dynamic programming problems are O(2n) 
–	 Stages and states have ‘curse of dimensionality’: 

•	 Stages and states can explode combinatorially 
•	 Challenge in DP formulation is to avoid or limit the curse… 

–	 Multistage graph is easiest 
–	 We’ll do a job scheduling DP nextWe ll do a job scheduling DP next 

• Another example of using the multistage graph model 
–	 And then it gets harder… 

•	 We’ll do a set-based DP model for a knapsack problem 
•	 Sets are “standard model” for complex DP 

Multistage graph Java implementation 

•	 Build graph going forward 
–	 Don’t need graph data structureDon t need graph data structure 

•	 Don’t need to create or store arcs 
•	 All information can be stored in nodes 
•	 Store predecessor of each node (implicit arc) 
•	 Source, next set of nodes and sink are special cases 

•	 Read off solution going backward from sink 
–	 Follow predecessors from sink to source 
–	 Subtract cumulative resources, profits at each step (arc) to

recover the decision on each projectrecover the decision on each project 
•	 Allocate n+1 nodes per stage if resource limit= n 

–	 If n= 4, need 5 nodes for resource level 0, 1, 2, 3, 4 
•	 Nested Node class holds profit, resource, predecessor 
•	 Java garbage collector will clean up Nodes not on optimal 

subsequences 
–	 No ‘predecessor’ will refer to them 
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MultistageGraph 
public class MultiStageGraph { 

private static class Node { 
private int projNbr;      // Project number 
private int cumResource;  // Resource allocated so far 
private int cumProfit;    private int cumProfit;    // Profit so far // Profit so far 
private Node predecessor; // Previous node in graph 
public Node(int proj, int res, int prof, Node p) { 

projNbr= proj; 
cumResource= res; 
cumProfit= prof; 
predecessor= p; 

}

}


private int numProj; // No of projects 
private int n; // Max units of resource + 1 
private Node root; // First node in graph 
private Node sink; // Last node in graph 

public MultiStageGraph(int np, int n) { 
this.numProj = np; 
this.n = n; // root, sink null initially 

} // See download for get, set… 

MultistageGraph: buildGraph() 

public void buildGraph(int[][] p) {  // Profit by project 

// Store previous stage nodes; need at next stage 

Node[] prevStage = new Node[n];Node[] prevStage = new Node[n];

// Store current stage nodes

Node[] currStage = new Node[n];

// Stage 0 start node, units so far 0, profit so far 0

root = new Node(0, 0, 0, null);


Node currentNode= null;

// Project (stage) 1 start nodes as special case,

// since they have single arcs back to root

for (int i = 0; i < n; i++) {


// Stage 1 start node has stage 0 profit 

currentNode = new Node(1, i, p[0][i], root); 

prevStage[i] = currentNode; 

} 
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d  d (i  j  0 ll)

MultistageGraph: buildGraph() 2 
// Stage 2 start nodes thru stage M-1 start nodes 

for (int i = 2; i < numProj; i++) { 

// Loop, giving 0-> n resources to project 

for (int j = 0; j < n; j++) { 

currentNode = new Node(i, j, 0, null);

currStage[j] = currentNode;

for (int k = 0; k <= j; k++) { // Arcs from prev stage

Node pastNode = prevStage[j - k];

int profit= p[i-1][k];

int cumProfit = profit + pastNode.cumProfit;

if (cumProfit >= currentNode.cumProfit) {


currentNode.cumProfit=cumProfit;

currentNode.predecessor=pastNode;
currentNode.predecessor pastNode;


}

}


}

// Copy current node array into previous node array

for (int j = 0; j < n; j++) {

prevStage[j] = currStage[j]; 

} 

} 

MultistageGraph: buildGraph() 3 

// Create the sink, an 'artificial' project M 

sink = new Node(numProj + 1, n-1, 0, null); 

// Mth project  n units resource  0 profit // Mth project, n units resource, 0 profit 

for (int i = 0; i < n; i++) { 

int j= n-1-i;  // Apply max units possible to M-1 project 

Node pastNode = prevStage[i]; 

int profit= p[numProj-1][j]; 

int cumProfit = profit + pastNode.cumProfit; 

if (cumProfit >= sink.cumProfit) {

sink.cumResource= j + pastNode.cumResource;

sink.cumProfit= cumProfit;

sink.predecessor= pastNode;


}

}

return;


} // End buildGraph() 
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MultistageGraph: backwardPass() 
public int backwardPass() { 

System.out.println("Problem solution:"); 

System.out.println(" Total profit: " + sink.cumProfit); 

System.out.println(" Total units: " + sink.cumResource+"\n"); 

Node next= sink;; 

Node current= sink.predecessor; 

while (current != null) {

System.out.println("Project: "+ current.projNbr);

// Difference in units is project units assigned

int units= next.cumResource - current.cumResource;

// Difference in profit is project profit

int profit= next.cumProfit - current.cumProfit;

S i tl (" U i  " it )
System.out.println(" Units: "+ units);

System.out.println(" Profit: "+ profit);

next= current;

current= current.predecessor;


} 

return sink.cumProfit; 

} 

// Better implementation would return 2-D array of (resource, 

// profit) for each project 

MultistageGraph: main() 

public static void main(String[] args) { 

int numProjects= 3; 

int maxResource= 4;int maxResource= 4; 

int[][] p2= {{0,6,8,8,10}, // Project 0 profits 

{0,5,11,16,17},  // Project 1 profits 

{0,1,4,5,6},}; // Project 2 profits 

// Increment maxResource: e.g., if maxResource=4, 

// we have 5 decision levels (0,1,2,3,4) 

MultiStageGraph g2= 

new MultiStageGraph(numProjects, ++maxResource); 

g2.buildGraph(p2); 

int totalProfit= g2.backwardPass(); 

System.out.println("Total profit: "+ totalProfit); 

} 
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•

Summary 

• Dynamic programming key conceptsDynamic programming key concepts 
–	 Stages: Decision points 
–	 States: Decision options 
–	 Principle of optimality 

•	 “In an optimal sequence of decisions or choices, each
subsequence must also be optimal” 

–	 Solution approach: create solution graph 
• Eliminate infeasible combinations at each stageEliminate infeasible combinations at each stage 
•	 Prune suboptimal combinations at each stage 
•	 Track predecessor of optimal subsequences to each stage 
•	 (Can generate graph going forward or backward) 

– In most problems, DP is a heuristic solution approach 
•	 Eliminate/prune unlikely combinations but not provably

suboptimal 
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