
1.204 Lecture 13

Dynamic programming:

Method
Method

Resource allocation

Introduction

•	 Divide and conqquer starts with the entire pproblem,, divides it
into subproblems and then combines them into a solution
–	 This is a top-down approach

•	 Dynamic programming starts with the smallest, simplest
subproblems and combines them in stages to obtain
solutions to larger subproblems until we get the solution to
the original problem
–	 This is a bottom-up approach

•	 Dynamic programming is used much more than divide
and conquer
–	 It is more flexible and controllable
–	 It is more efficient on most problems since it must consider far

fewer combinations

1

Principle of optimality

•	 “Principple of opptimalityy”:
–	 In an optimal sequence of decisions or choices, each

subsequence must also be optimal

–	 For some problems, an optimal sequence may be found by

making decisions one at a time and never making a mistake
•	 True for greedy algorithms (except label correctors)

–	 For many problems it’s not possible to make stepwise
decisions based only on local information so that the
sequence of decisions is optimalsequence of decisions is optimal.

•	 One way to solve such problems is to enumerate all possible
decision sequences and choose the best

•	 Dynamic programming can drastically reduce the amount of
computation by avoiding sequences that cannot be optimal by the
“principle of optimality”

Project selection example

•	 Suppppose we have:
–	 $4 million budget
–	 3 possible projects (e.g. flood control)

•	 Each funded at $1 million increments from $0 to $4 million
•	 Each increment produces a different marginal benefit

–	 Dynamic programming problems are usually discrete, not
continuous

•	 We want to find the plan that produces the maximum
benefit

•	 Stages are the number of decisions to be made
–	 We have 3 stages, since we have 3 projects

•	 States are the number of distinct possibilities
– At each stage there are 5 states ($0, 1, 2, 3, 4 million)

2

3

Project selection formulation

• We build a multistage graph to represent this problem:g g p p p
– Source node at start of graph, representing ‘null’ initial stage
– Set of nodes at each stage for each state
– Sink node at end of graph, which is a collapsed representation

of the final state
• Each node characterized by V(i,j):

– V(i,j) is value (benefit) obtained up to (but not including) stage i
by committing j resources

– Each node also stores its predecessor node in P(i)
• Each arc is characterized by E(m,n):

– E(m,n) is value obtained by spending n resources on project m

Project selection data

Investment Benefit Investment Benefit Investment Benefit
Project 0 Project 1 Project 2

• In theory, projects could have dependencies, but in practice
it’s an improbable model. In the example above:
– Project 1’s benefits could depend on project 0 investment

0 0 0 0 0 0
1 6 1 5 1 1
2 8 2 11 2 4
3 8 3 16 3 5
4 10 4 17 4 6

– Project 1 s benefits could depend on project 0 investment
• But not on project 2 investment

– Project 2’s benefits could depend on total project 0 and 1
investment

• But not on either individually
• (There are some chip power management graphs with such

dependencies)

Dynamic programming graph: feasible

1 6
V(1,0) V(2,0)

V(1,1)
2 7

V(2,1)

V(3,4)V(0,0)
0 V(1,2) V(2,2) 11

3 8

4 9
(,) (,)V(1,3) V(2,3)

V(1,4)
5 10

V(2,4)

Stage:
0 1 2 3
| Project 0 decisions | Project 1 decisions | Project 2 decisions |

Dynamic programming graph: feasible

V(1,0) V(2,0)
61

0

2

3
V(1,2)

V(1,3)
4

5

(,)

V(1,4)

V(1,1) V(2,1)
7

V(3,4)

V(2,2)

V(0,0)
11

8

V(2,3)(,)
9

V(2,4)

Stage:

0 1 2 3

| Project 0 decisions | Project 1 decisions | Project 2 decisions |

10

4

Dynamic programming graph: feasible

1 6
V(1,0) V(2,0)E(1,0)=0

0

2

3

7

8

11
V(0,0)

V(1,1)

V(1,2)

V(1,3)

V(2,1)

V(2,2)

V(2,3)

V(3,4)

4

5

9

10

(,)

V(1,4)

(,)

V(2,4)

Stage:
0 1 2 3
| Project 0 decisions | Project 1 decisions | Project 2 decisions |

Dynamic programming graph: feasible

V(1,0)
1 6

E(1,0)=0 V(2,0)

0

2

3

7

8

V(0,0)

V(1,1)

V(1,2)

V(1,3)

V(2,1)

V(2,2)

V(2,3)

E(1,0)=0
V(3,4)

11

V(1,4)

4

5

(,)
9

10
V(2,4)

(,)

Stage:
0 1 2 3
| Project 0 decisions | Project 1 decisions | Project 2 decisions |

5

0

0

0

2

3

7

8

V(0,0)

V(1,1)

V(1,2)

V(1,3)

V(2,1)

V(2,2)

V(2,3)

E(1,0)=0

E(1,0)=

(,)

Dynamic programming graph: feasible

1 6
V(1,0) E(1,0)=0 V(2,0)

11
V(3,4)

9

10
V(2,4)

(,)
4

5
V(1,4)

Stage:
0 1 2 3
| Project 0 decisions | Project 1 decisions | Project 2 decisions |

0

2

3

7
V(0,0)

V(1,1)

V(1,2)

V(1,3)

V(2,1)

V(2,2)

V(2,3)

E(1,0)=0

E(1,0)=

(,)

Dynamic programming graph: feasible

1 6
V(1,0) E(1,0)=0 V(2,0)

11
V(3,4)

8

9

10
V(2,4)

E(1,0)=0
(,)

4

5
V(1,4) E(1,0)=0

Stage:
0 1 2 3
| Project 0 decisions | Project 1 decisions | Project 2 decisions |

6

t t t t t

0

Dynamic programming graph: feasible

1 6
V(1,0) V(2,0)E(1,0)=0

0

2

3

7

8

11
V(0,0)

V(1,1)

V(1,2)

V(1,3)

V(2,1)

V(2,2)

V(2,3)

V(3,4)
E(1,0)=0

E(1,0)=

4

5

9

10

(,)

V(1,4)

(,)

V(2,4)

E(1,0)=0

E(1,0)=0
Stage:

0 1 2 3
| Project 0 decisions | Project 1 decisions | Project 2 decisions |

Solution

•	 Generate gg praph in forward direction:
–	 Start at source node
–	 Compute V(i,j) and E(m,n) as graph is built
–	 Keep track of predecessor P(i) of each node that yields highest

V(i,j)
• This eliminates non-optimal subsequences (“pruning”)

–	 Eliminate infeasible arcs and nodes as graph is built
•	 Rule is easy: Check budget constraint at each node; do not

d h ld i l igenerate arcs or nodes that would violate it
–	 End when sink node is reached from all nodes of previous

stage
•	 Construct solution by tracing back from sink to source

using predecessor variable

7

0

) V(

0

Dynamic programming graph: forward

1 6
V(1,0) V(2,0)E(1,0)=0

0 0

6 0

0 1

6 2

0

2

3

7

8

11
V(0,0)

V(1,1)

V(1,2)

V(1,3)

V(2,1)

V(2,2)

V(2,3)

V(3,4)
E(1,0)=0

E(1,0)=

0 0

8 0

8 0

11 2

17 2

22 10

4

5

9

10

(,)

V(1,4)

(,)

V(2,4)

E(1,0)=0

E(1,0)=0
Stage:

0 1 2 3
| Project 0 decisions | Project 1 decisions | Project 2 decisions |

10 0 22 2
V pred

Dynamic programming graph: backward

1 6
V(1,0) V(2,0)E(1,0)=0

0 0

6 0

0 1

6 2

0

2

3

7

8

11
V(0,0)

V(1,1)

V(1,2)

V(1,3

V(2,1)

V(2,2)

2,3)

V(3,4)
E(1,0)=0

E(1,0)=

0 0

8 0

8 0

11 2

17 2

22 10

4

5

9

10

(,)

V(1,4)

(,)

V(2,4)

E(1,0)=0

E(1,0)=0
Stage:

0 1 2 3
| Project 0 decisions | Project 1 decisions | Project 2 decisions |

10 0 22 2
V pred

8

–

Multistage graph problem characteristics

• Multistage graph is the standard DP first example
– Graph is reduced by applying feasibility constraint to eliminateGraph is reduced by applying feasibility constraint to eliminate

many combinations
•	 Can’t exceed resource limit

– Each stage is independent of all previous stages
•	 How you got to V(i,j) doesn’t matter
•	 This limits the combinatorial aspect of the original problem
•	 A naïve approach would have looked at all project combinations

• Principle of optimality:
– “In an optimal sequence of decisions or choices, eachan optimal sequence of decisions or choices, eachIn

subsequence must also be optimal”

– In our example subsequences are optimal:

•	 Node 0 to node 2 (trivially)
•	 Node 0 to node 2 to node 10
•	 Node 0 to node 2 to node 10 to node 11 (full sequence)

Complexity of multistage graph

• Complexity of well-behaved multistage graph:
– M projects or stages
– At each stage there are n2/2 comparisons to find V(i j) from At each stage, there are ~n2/2 comparisons to find V(i,j) from

the incoming arcs
•	 Where n is number of resource levels

– This is O(Mn2)
– Horowitz and Sahni call it O(M+a)

•	 Where a is number of arcs since they assume the graph has
already been built and is available as input

• Complexity of worst case:
– Worst case:Worst case:

•	 Different resource levels in each project, so number of nodes
increases at each stage

•	 High constraint (large resource limit), so no elimination of nodes
•	 Number of nodes doubles in each stage

– This is O(2n)
• Thus, complexity is O(min(Mn2, 2n))

9

namic isn t natural for most

Dynamic programming ‘curses’

•	 Dynamic programming (DP) isnprogramming (DP) ’t natural for most Dy
problems
–	 Most dynamic programming problems are O(2n)
–	 Stages and states have ‘curse of dimensionality’:

•	 Stages and states can explode combinatorially
•	 Challenge in DP formulation is to avoid or limit the curse…

–	 Multistage graph is easiest
–	 We’ll do a job scheduling DP nextWe ll do a job scheduling DP next

• Another example of using the multistage graph model
–	 And then it gets harder…

•	 We’ll do a set-based DP model for a knapsack problem
•	 Sets are “standard model” for complex DP

Multistage graph Java implementation

•	 Build graph going forward
–	 Don’t need graph data structureDon t need graph data structure

•	 Don’t need to create or store arcs
•	 All information can be stored in nodes
•	 Store predecessor of each node (implicit arc)
•	 Source, next set of nodes and sink are special cases

•	 Read off solution going backward from sink
–	 Follow predecessors from sink to source
–	 Subtract cumulative resources, profits at each step (arc) to

recover the decision on each projectrecover the decision on each project
•	 Allocate n+1 nodes per stage if resource limit= n

–	 If n= 4, need 5 nodes for resource level 0, 1, 2, 3, 4
•	 Nested Node class holds profit, resource, predecessor
•	 Java garbage collector will clean up Nodes not on optimal

subsequences
–	 No ‘predecessor’ will refer to them

10

MultistageGraph
public class MultiStageGraph {

private static class Node {
private int projNbr; // Project number
private int cumResource; // Resource allocated so far
private int cumProfit; private int cumProfit; // Profit so far // Profit so far
private Node predecessor; // Previous node in graph
public Node(int proj, int res, int prof, Node p) {

projNbr= proj;
cumResource= res;
cumProfit= prof;
predecessor= p;

}

}

private int numProj; // No of projects
private int n; // Max units of resource + 1
private Node root; // First node in graph
private Node sink; // Last node in graph

public MultiStageGraph(int np, int n) {
this.numProj = np;
this.n = n; // root, sink null initially

} // See download for get, set…

MultistageGraph: buildGraph()

public void buildGraph(int[][] p) { // Profit by project

// Store previous stage nodes; need at next stage

Node[] prevStage = new Node[n];Node[] prevStage = new Node[n];

// Store current stage nodes

Node[] currStage = new Node[n];

// Stage 0 start node, units so far 0, profit so far 0

root = new Node(0, 0, 0, null);

Node currentNode= null;

// Project (stage) 1 start nodes as special case,

// since they have single arcs back to root

for (int i = 0; i < n; i++) {

// Stage 1 start node has stage 0 profit

currentNode = new Node(1, i, p[0][i], root);

prevStage[i] = currentNode;

}

11

d d (i j 0 ll)

MultistageGraph: buildGraph() 2
// Stage 2 start nodes thru stage M-1 start nodes

for (int i = 2; i < numProj; i++) {

// Loop, giving 0-> n resources to project

for (int j = 0; j < n; j++) {

currentNode = new Node(i, j, 0, null);

currStage[j] = currentNode;

for (int k = 0; k <= j; k++) { // Arcs from prev stage

Node pastNode = prevStage[j - k];

int profit= p[i-1][k];

int cumProfit = profit + pastNode.cumProfit;

if (cumProfit >= currentNode.cumProfit) {

currentNode.cumProfit=cumProfit;

currentNode.predecessor=pastNode;
currentNode.predecessor pastNode;

}

}

}

// Copy current node array into previous node array

for (int j = 0; j < n; j++) {

prevStage[j] = currStage[j];

}

}

MultistageGraph: buildGraph() 3

// Create the sink, an 'artificial' project M

sink = new Node(numProj + 1, n-1, 0, null);

// Mth project n units resource 0 profit // Mth project, n units resource, 0 profit

for (int i = 0; i < n; i++) {

int j= n-1-i; // Apply max units possible to M-1 project

Node pastNode = prevStage[i];

int profit= p[numProj-1][j];

int cumProfit = profit + pastNode.cumProfit;

if (cumProfit >= sink.cumProfit) {

sink.cumResource= j + pastNode.cumResource;

sink.cumProfit= cumProfit;

sink.predecessor= pastNode;

}

}

return;

} // End buildGraph()

12

t t t

MultistageGraph: backwardPass()
public int backwardPass() {

System.out.println("Problem solution:");

System.out.println(" Total profit: " + sink.cumProfit);

System.out.println(" Total units: " + sink.cumResource+"\n");

Node next= sink;;

Node current= sink.predecessor;

while (current != null) {

System.out.println("Project: "+ current.projNbr);

// Difference in units is project units assigned

int units= next.cumResource - current.cumResource;

// Difference in profit is project profit

int profit= next.cumProfit - current.cumProfit;

S i tl (" U i " it)
System.out.println(" Units: "+ units);

System.out.println(" Profit: "+ profit);

next= current;

current= current.predecessor;

}

return sink.cumProfit;

}

// Better implementation would return 2-D array of (resource,

// profit) for each project

MultistageGraph: main()

public static void main(String[] args) {

int numProjects= 3;

int maxResource= 4;int maxResource= 4;

int[][] p2= {{0,6,8,8,10}, // Project 0 profits

{0,5,11,16,17}, // Project 1 profits

{0,1,4,5,6},}; // Project 2 profits

// Increment maxResource: e.g., if maxResource=4,

// we have 5 decision levels (0,1,2,3,4)

MultiStageGraph g2=

new MultiStageGraph(numProjects, ++maxResource);

g2.buildGraph(p2);

int totalProfit= g2.backwardPass();

System.out.println("Total profit: "+ totalProfit);

}

13

•

Summary

• Dynamic programming key conceptsDynamic programming key concepts
–	 Stages: Decision points
–	 States: Decision options
–	 Principle of optimality

•	 “In an optimal sequence of decisions or choices, each
subsequence must also be optimal”

–	 Solution approach: create solution graph
• Eliminate infeasible combinations at each stageEliminate infeasible combinations at each stage
•	 Prune suboptimal combinations at each stage
•	 Track predecessor of optimal subsequences to each stage
•	 (Can generate graph going forward or backward)

– In most problems, DP is a heuristic solution approach
•	 Eliminate/prune unlikely combinations but not provably

suboptimal

14

MIT OpenCourseWare
http://ocw.mit.edu

1.204 Computer Algorithms in Systems Engineering
Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

