
=

3

1.204 Lecture 20

Linear systems:

Gaussian elimination
Gaussian elimination

LU decomposition

Systems of Linear Equations

3x0 + x1 - 2x2
2x2x0 + 4x + 4x1 + 3x2+ 3x
x0 - 3x1

1 -2

2 4 3
2 4 3

1 -3 0

x0
x
x11

x2

=

= 5

= 35
35

= -5

5

35
35

-5

A x = b

3 x 3 3 x 1 3 x 1

1

Algorithm to Solve Linear System

=aijCreate matrix
x0
x1
x22

=
b0
b1
b22

A x b

0
0 0

=a’ij x0
x1
x2

= Forward solve
b’0
b’1
b’2

A’A’ xx b’b’

0
0 0

x0
Back solve

x0
x1
x2

=
b’0
b’1
b’2

x1
x2

A’ x b’

Gaussian Elimination: Forward Solve

3 1 -2 5
Q= 2 4 3 35Q

1 -3 0 -5
A b

Form Q for convenience
Do elementary row ops:

Multiply rows Multiply rows
Add/subtract rows

Make column 0 have zeros below diagonal

Pivot= 1/3
Pivot= 2/3 3 1 -2

0 10/3 13/3
00 -10/310/3 2/32/3

5

95/3
 Row 1’= row 1 - (2/3) row 0
20/3 Row 2’= row 2 (1/3) row 0 Row 2 = row 2 - (1/3) row 0-20/3

Make column 1 have zeros below diagonal
3 1 -2 5

Pivot= -1 0 10/3 13/3 95/3
Row 2’’= row 2’ + 1 * row 1 0 0 15/3 75/3

2

o o 0 0

Gaussian Elimination: Back Solve

3 1 -2 5
0 10/3 13/3 95/30 10/3 13/3 95/3

(15/3)x2=(75/3) x2 = 50 0 15/3 75/3

3 1 -2 5
0 10/3 13/3 95/3
0 0 15/3 75/3

(10/3)x1 + (13/3)*5= (95/3) x1 = 3

0 10/3 13/3 95/3
0 0 15/3 75/3

3x0 + 1*3 - 2*5 = 5 x0 = 43 1 -2 5

A Complication

0 1 -2 5
22 44 33 35 35 Row 1’= row 1 - (2/0) row 0(/) o
1 -3 0 -5

Exchange rows: put largest pivot element in row:

2 4 3 35
00 11 -22 55
1 -3 0 -5

Do this as we process each column.

If there is no nonzero element in a column,
matrix is not full rank.

3

Gaussian Elimination

public class Gauss {
public static double[] gaussian(double[][] a, double[] b) {
int n = a length; int n = a.length; // Number of unknowns // Number of unknowns

double[][] q = new double[n][n + 1];

for (int i = 0; i < n; i++) {

for (int j = 0; j < n; j++) // Form q matrix

q[i][j]= a[i][j];

q[i][n]= b[i];

}
forward_solve(q); // Do Gaussian elimination
back_solve(q); // Perform back substitution

double[] x= new double[n]; // Extract column n of q,

for (int i = 0; i < n; i++) // which contains the solution x

x[i]= q[i][n];

return x;

}

Forward Solve
private static void forward_solve(double[][] q) {

int n = q.length;
int m= q[0].length;

for (int i = 0; i < n; i++) { // Find row w/max element in this
int maxRow = i; // column, at or below diagonal
for (int k = i + 1; k < n; k++)
if (Math.abs(q[k][i]) > Math.abs(q[maxRow][i]))

maxRow = k;

if (maxRow != i) // If row not current row, swap
for (int j = i; j < m; j++) {

double t = q[i][j];

q[i][j]= q[maxRow][j];

q[maxRow][j]= t;
q[maxRow][j]= t;

}

for (int j = i + 1; j < n; j++) { // Calculate pivot ratio
double pivot = q[j][i] / q[i][i];
for (int k = i; k < m; k++) // Pivot operation itself

q[j][k] -= q[i][k] * pivot;
}

}
}

4

Back Substitution

private static void back_solve(double[][] q) {
int n = q length; int n = q.length;

int m= q[0].length;

for (int p= n; p < m; p++) { // Loop over p columns

for (int j = n - 1; j >= 0; j--) { // Start at last row
double t = 0.0; // t- temporary
for (int k = j + 1; k < n; k++)

t += q[j][k] * q[k][p];
q[j][p]= (q[j][p] - t) / q[j][j];

}
}

}

Variations

Multiple right hand sides: augment Q, solve all eqns at once

33 11 2-2 55 77 87 87
2 4 3 35 75 -1
1 -3 0 -5 38 52

Matrix inversion (rarely done in practice)

3 13 1 -22

2 4 3

1 -3 0

1 0 0
1 0 0
0 1 0
0 0 1

0 # #
0 0 #

@ @ @@ @@
@ @ @
@ @ @

A I A-1

A • ? = I Q ? = A-1

5

6

Invert
public static double[][] invert(double[][] a) {

int n = a.length; // Number of unknowns
double[][] q = new double[n][n+n];

for (int i = 0; i < n; i++)
f (i t j 0 j j) // F t ifor (int j = 0; j < n; j++) // Form q matrix
q[i][j]= a[i][j];

// Form identity matrix in right half of q
for (int i = 0; i < n; i++)
q[i][n+i]= 1.0;

forward_solve(q); // Do Gaussian elimination
back_solve(q); // Perform back substitution

double[][] x= new double[n][n]; // Extract R half of q
for (int i = 0; i < n; i++) // which contains inverse
for (int j= 0; j < n; j++)
x[i][j]= q[i][j+n];

return x;
}
// Method multiply() in download
// Example use in GaussTest in download

LU decomposition

• We can write matrix A as the product of two matrices
L and U:

000l uuuu aaaa

• We can solve

33323130

222120

1110

00

0
00
000

llll
lll

ll
l

33

2322

131211

03020100

000
00

0

u
uu
uuu
uuuu

.

33323130

23222120

13121110

03020100

aaaa
aaaa
aaaa
aaaa

=

bxULxULxA =⋅⋅=⋅⋅=⋅)()(

by first solving for a vector y

and then solving

Why? Solving each is trivial: forward, back substitution

byL =⋅

yxU =⋅

Why and How

•	 This is perhaps twice as fast as GaussianThis is perhaps twice as fast as Gaussian
elimination (count steps)

•	 L and U do not depend on b, so we can solve as
many right hand sides as we wish

•	 How: Crout’s method
–	 We can decompose matrix A into matrices L and U by

arranging the equations in a given orderarranging the equations in a given order
–	 The rearrangement is subtle; we don’t cover it in class

since you’ll never need to implement or modify it
•	 Java implementation is on the Web site, based on

Press et al, Numerical Recipes

Class LU

•	 Constructor: LU(double[][] a)
–	 Stores LU decomposition in a single matrix Stores LU decomposition in a single matrix

•	 All lii = 1.0 in matrix L
•	 We store all u elements and all non-diagonal l elements in LU

•	 Methods:
–	 public double[] solve(double[] b)

–	 public double[][] solve(double[][] b)

–	 public double[][] inverse()

–	 public double determinant()public double determinant()

– public double[] improve(double[] b, double[] x)

•	 See download for code and LUTest class for
examples of usage
–	 You can use it as a ‘black box’
–	 Use this in preference to class Gauss

7

8

Other linear system algorithms

• Banded matricesBanded matrices
• Sparse matrices
• Singular value decompositions (SVD)

– Should be used in least squares computations
• Cholesky decomposition (A= L LT)

– Square, symmetric, positive definite matrices
U d i t i– Used in econometrics

• And others…
– Almost all are based on pivot operations

Linear system model: Rail performance

• Compute running time, including delays, for trains
on a single track railroadon a single track railroad
– Traffic in both directions: east and west
– Three types of train (6 classes of train, including direction)

Class Description Velocity
0 WB way freight ‐25
1 WB thru freight ‐50
2 WB passenger ‐80

From E.R. Petersen

p g
3 EB passenger 80
4 EB thru freight 50
5 EB way freight 25

Meet

Passenger

Overtake

Way Freight Through Freight

Siding 1 Siding 2 Siding 3

Figure by MIT OpenCourseWare.

9

Rail performance, p.2

• Priorities used to model meets and overtakes
– Meets occur when trains travel in opposite directions and

one must take siding and wait until
pp
other passes

– Overtakes occur when trains traveling in same direction
interact, and slower one takes siding to let faster one go by

– Assume all sidings are long enough
• We want to model the running time for each class of

train over a segment of railroad, as a function of:
f f ()– Number of trains of each class (type, direction)

– Speed of trains
– Number of sidings
– Priorities, and other, less important variables

• Our linear model will give nonlinear performance behavior!

Delay matrix D

• Matrix D gives average delay for each interaction
(meet or overtake) between two classes of train()
– We will then multiply this by the expected number of

interactions, to get total delay
• Delay matrix D has coefficients Dij:

ji

ij
iijij v

d
v
d

b
p

SpD −
+

+=
)1(2

60 2

– Dij= Expected delay to train i due to train j, in minutes
– Si= Time to take siding for train i, in minutes (5 minutes)
– pij= Relative number of times train i waits for train j (0 <= pij <= 1)
– b= Number of sidings (19)
– D= Distance of railroad segment being modeled, in miles (400 mi)
– vi= Free running velocity for train i, in miles per hour

10

Delay matrix D

Probability, delay matrices

Priority WB way WB thru WB pass EB pass EB thru EB way
WB way 0 0.7 0.9 1 0.7 0.5
WB thru 0.3 0 0.7 0.7 0.5 0.3

Prob(delay)

WB pass 0.1 0.3 0 0.5 0.3 0
EB pass 0 0.3 0.5 0 0.3 0.1
EB thru 0.3 0.5 0.7 0.7 0 0.3
EB way 0.5 0.7 1 0.9 0.7 0

Delay WB way WB thru WB pass EB pass EB thru EB way
WB way 0 9.4 17.9 36.5 21.1 14.5
WB thru 2.6 0 5.7 13.1 8.5 4.7
WB pass 0.7 1.9 0 6.3 3.3 0
EB pass 0 3.3 6.3 0 1.9 0.7
EB thru 4.7 8.5 13.1 5.7 0 2.6
EB way 14.5 21.1 36.5 17.9 9.4 0

A
A

A

Train j

Tr
ain

 j
Tr

ai
n

j

Tr
ai

n
j

Tr
ain

 i

Tr
ain

 i

TIME0 < i < j 0 < j < i
(a) (b) (c)

Yard 2

Siding 2

Siding 1

Yard 1
j < 0, i > 0

D
IS

TA
N

C
E

Figure by MIT OpenCourseWare.

11

Derivation of linear system
• Let

– Wi= average time for train of class i, including delays
– Ti= free running time for train of class I (input)
– Dij= delays due to meets and overtakes to train of class IDij delays due to meets and overtakes to train of class I

due to trains of class j
– Mij= number of meets and overtakes between train of class

I and trains of class j
• Average time for train to travel across segment:

• Interactions between train i and trains of class j:

)(∑ ⋅+=
j

ijijii MDTW

te act o s bet ee t a a d t a s o c ass j

– Mij= number of trains/day in class j times fraction of day
that train of class i can interact with trains of class j

• If EB train takes 12 hours (720 minutes) to cover line, as does WB, it
will meet every WB train that operates that day

• If EB train took only 6 hours, it would have half the interactions

1440/)(ijjij WWNM +=

Derivation of linear system, p.2

• The rest is algebra, to write the two equations
above in the form AW= T, with W the unknown (“x”)

)(∑ ⋅+=
i

ijijii MDTW 1440/)(ijjij WWNM +=

above in the form AW T, with W the unknown (x)

: terms Wjand Wiseparate to termsRearrange

)(
1440

:equation of sideleft on termsCollect Wi

)(
1440

i
j

ij
jij

i

j
ij

jij
ii

NDND

TWW
ND

W

WW
ND

TW

=+
⋅

−

+
⋅

+=

∑

∑

2

1

0

2

1

0

222120

121110

020100

t
t
t

w
w
w

aaa
aaa
aaa

=⋅

• There is a +/- sign convention handled by a matrix C (multiplies Dij):
– c[i][j]= -1 if j<i<=2 or (3 <=i< j), 0 otherwise (with 6 train classes)

Amatrix in elements diagonal-off theare
 tscoefficien Wj thediagonal; theist coefficien WiThe

1440
)

1440
1(ij

j

jij

j
i

jij TW
ND

W
ND

=⋅
⋅

−⋅
⋅

− ∑∑

i t i t b // N b f idi

if (i j) {

Data members, constructor
public class RailDelay {

private int n; // Number of train classes

private int d; // Distance in miles

private int b; // Number of sidings

private double[][] p; // Probability of delay in interaction

private double[] s; // Time to take siding, by train class

private double[] v; // Velocity by train class

private double[][] c; // Matrix that indicates if interaction

// is pass or meet, by train classes involved

private int[] nTrain; // Number of trains by class, per day

public RailDelay(String filename) {

// Constructor reads inputs from file, sets data members

}

getDelay()
public double[] getDelay() {

double[][] dm= new double[n][n]; // Delay matrix D

for (int i= 0; i < n; i++)

for (int j= 0; j < n; j++) {

dm[i][j]= p[i][j]*s[i] + 60.0*p[i][j]*p[i][j] *

Math abs(d/v[i] d/v[j])/(2 0*(b+1)); } Math.abs(d/v[i]- d/v[j])/(2.0*(b+1)); }

double[] t= new double[n]; // Free running time T

for (int i= 0; i < n; i++)

t[i]= d*60.0/v[i];

double[][] a= new double[n][n]; // Total delay matrix A

for (int i= 0; i < n; i++) {

double delay= 0.0;

for (int j= 0; j < n; j++) {

if (i != j) {

a[i][j]= dm[i][j]*nTrain[j]*c[i][j]/1440;

delay += a[i][j];

} }

a[i][i]= 1.0 - delay; }

double[] w= Gauss.gaussian(a, t);

return w;

}

12

t t

main(), sample output

public static void main(String[] args) {

RailDelay r= new RailDelay("src/linear/rail.txt");

double[] w= r getDelay(); double[] w= r.getDelay(); // Gets output w // Gets output w

int n= w.length;

System.out.println("i Act time Free time");

for (int i= 0; i < n; i++)

System.out.printf("%d %8.1f %8.1f \n",i,

Math.abs(w[i]), Math.abs(r.getFreeTime(i)));

System.out.println();

}

// S // Samplle output: 33 wayffreii htght, 4 th4 thru ffreii htght, 22 passenger

i Act time Free time

0 1265.2 960.0

1 544.9 480.0

2 315.8 300.0

3 315.8 300.0

4 544.9 480.0

5 1265.2 960.0

Rail performance estimate

13

0 10 20 30

3000

2500

2000

1500

1000

500

Ex
pe

ct
ed

 tr
an

si
t t

im
e

in
 m

in
ut

es

Number of fast freights per day

Expected Transit Time

Way
- F

rei
gh

t

Fast-F
reight

Passenger

Figure by MIT OpenCourseWare.

Summary

•	 Linear models are a reasonable starting point in many
cases tto unddersttandd compllex systtems

–	 Writing down equations to model a system analytically or through
solving linear or nonlinear systems is often a viable option

–	 Linear models can produce nonlinear behavior
–	 In the rail example, this is more intuitive (for some of us) and more

robust than simulation

•	 I used essentially the rail analysis in a Vermont Act 250
expert witness case
–	 Traffic impacts on a neighborhood from a large development
–	 Narrow road with parking on both sides
–	 Number of “meets” between cars would increase very sharply
–	 Project application was denied

•	 We’ll use linear systems as a “subproblem” in next lecture

14

MIT OpenCourseWare
http://ocw.mit.edu

1.204 Computer Algorithms in Systems Engineering
Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

