1.204 Lecture 20

Linear systems:
 Gaussian elimination
 LU decomposition

Systems of Linear Equations

$$
\begin{aligned}
& 3 x_{0}+x_{1}-2 x_{2}= 5 \\
& 2 x_{0}+4 x_{1}+3 x_{2}-35 \\
& x_{0}-3 x_{1}=-5
\end{aligned}
$$

Algorithm to Solve Linear System

Gaussian Elimination: Forward Solve

$Q=|$| 3 | 1 | -2 | 5 | Form Q for convenience
 Do elementary row ops:
 2 |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 4 | 3 | 35 | Multiply rows |
| 1 | -3 | 0 | -5 | Add/subtract rows |

Make column 0 have zeros below diagonal

Pivot= $2 / 3$ Pivot= $1 / 3$	$\begin{gathered} 1 \\ 10 / 3 \\ -10 / 3 \end{gathered}$	$\begin{aligned} & -2 \\ & 13 / 3 \\ & 2 / 3 \end{aligned}$	$\begin{gathered} 5 \\ 95 / 3 \\ -20 / 3 \end{gathered}$	Row 1'= row 1 - (2/3) row 0 Row 2'= row 2 - ($1 / 3$) row 0

Make column 1 have zeros below diagonal

Pivot $\left.=-1 \longrightarrow$| 3 | 1 | -2 | 5 |
| :---: | :---: | :---: | :---: |
| 0 | $10 / 3$ | $13 / 3$ | $95 / 3$ |
| 0 | 0 | $15 / 3$ | $75 / 3$ | \right\rvert\, Row 2"= row 2' + 1 * row 1

Gaussian Elimination: Back Solve

A Complication

0	1	-2	5
2	4	3	35
1	-3	0	-5

Exchange rows: put largest pivot element in row:

2	4	3	35
0	1	-2	5
1	-3	0	-5

Do this as we process each column.
If there is no nonzero element in a column, matrix is not full rank.

Gaussian Elimination

```
public class Gauss {
    public static double[] gaussian(double[][] a, double[] b) {
        int n = a.length; l| Number of unknowns
        double[][] q = new double[n][n + 1];
        for (int i = 0; i < n; i ++) {
            for (int j = 0; j < n; j++) |/ Form q matrix
                q[i][j]= a[i][j];
            q[i][n]= b[i];
        }
        forward_solve(q); |/ Do Gaussian elimination
        back_solve(q); |/ Perform back substitution
        double[] x= new double[n]; ll Extract column n of q,
        for (int i = 0; i < n; i + +) || which contains the solution x
        x[i]= q[i][n];
        return x;
    }
```


Forward Solve

```
private static void forward_solve(double[][] q) {
    int n = q.length;
    int m= q[0].length;
    for (int i = 0; i < n; i ++) { l/ Find row w/max element in this
        int maxRow = i; || column, at or below diagonal
        for (int k = i + 1; k<n; k++)
            if (Math.abs(q[k][i]) > Math.abs(q[maxRow][i]))
                maxRow = k;
            if (maxRow != i) |/ If row not current row, swap
            for (int j = i; j < m; j++) {
                double t = q[i][j];
                q[i][j]= q[maxRow][j];
                q[maxRow][j]= t;
            }
        for (int j = i + 1; j < n; j++) { | Calculate pivot ratio
            double pivot = q[j][i] / q[i][i];
            for (int k = i; k<m; k++) |/ Pivot operation itself
                q[j][k] = q[i][k] * pivot;
            }
    }
```

\}

Back Substitution

```
private static void back_solve(double[][] q) {
    int n = q.length;
    int m= q[0].length;
    for (int p= n; p < m; p++) { || Loop over p columns
        for (int j = n - 1; j >= 0; j..) { || Start at last row
            double t = 0.0;
            for (int k = j + 1; k < n; k++)
                t t= q[j][k] * q[k][p];
            q[j][p]=(q[j][p] - t) / q[j][j];
        }
    }
}
```


Variations

Multiple right hand sides: augment Q , solve all eqns at once

3	1	-2	5	7	87
2	4	3	35	75	-1
1	-3	0	-5	38	52

Matrix inversion (rarely done in practice)

Invert

```
public static double[][] invert(double[][] a) {
    int n = a.length; /l Number of unknowns
    double[][] q = new double[n][n+n];
    for (int i = 0; i < n; i ++)
        for (int j = 0; j < n; j++) /| Formq matrix
            q[i][j]= a[i][j];
    |/ Form identity matrix in right half of q
    for (int i = 0; i < n; i ++)
        q[i][n+i]=1.0;
    forward_solve(q); I/ Do Gaussian elimination
    back solve(q); |/ Perform back substitution
    double[][] x= new double[n][n]; |/ Extract R half of q
    for (int i = 0; i < n; i ++) || which contains inverse
        for (int j= 0; j < n; j ++)
            x[i][j]= q[i][j+n];
    return x;
}
|/ Method multiply() in download
|/ Example use in GaussTest in download
```


LU decomposition

- We can write matrix A as the product of two matrices L and U:

l_{00}	0	0	0					
l_{10}	l_{11}	0	0					
l_{20}	l_{21}	l_{22}	0					
l_{30}	l_{31}	l_{32}	l_{33}	$\quad \cdot$	u_{00}	u_{01}	u_{02}	u_{03}
:---:	:---:	:---:	:---:					
0	u_{11}	u_{12}	u_{13}					
0	0	u_{22}	u_{23}					
0	0	0	u_{33}	$=$	a_{00}	a_{01}	a_{02}	a_{03}
:---	:---	:---	:---					
a_{10}	a_{11}	a_{12}	a_{13}					
a_{20}	a_{21}	a_{22}	a_{23}					
a_{30}	a_{31}	a_{32}	a_{33}					

- We can solve

$$
A \cdot x=(L \cdot U) \cdot x=L \cdot(U \cdot x)=b
$$

by first solving for a vector y

Why? Solving each is trivial: forward, back substitution

Why and How

- This is perhaps twice as fast as Gaussian elimination (count steps)
- L and U do not depend on b, so we can solve as many right hand sides as we wish
- How: Crout's method
- We can decompose matrix A into matrices L and U by arranging the equations in a given order
- The rearrangement is subtle; we don't cover it in class since you'll never need to implement or modify it
- Java implementation is on the Web site, based on Press et al, Numerical Recipes

Class LU

- Constructor: LU(double[][] a)
- Stores LU decomposition in a single matrix
- All $\mathrm{I}_{\mathrm{ii}}=1.0$ in matrix L
- We store all u elements and all non-diagonal I elements in LU
- Methods:
- public double[] solve(double[] b)
- public double[][] solve(double[][] b)
- public double[][] inverse()
- public double determinant()
- public double[] improve(double[] b, double[] x)
- See download for code and LUTest class for examples of usage
- You can use it as a 'black box'
- Use this in preference to class Gauss

Other linear system algorithms

- Banded matrices
- Sparse matrices
- Singular value decompositions (SVD)
- Should be used in least squares computations
- Cholesky decomposition ($A=L L^{\top}$)
- Square, symmetric, positive definite matrices
- Used in econometrics
- And others...
- Almost all are based on pivot operations

Linear system model: Rail performance

- Compute running time, including delays, for trains on a single track railroad
- Traffic in both directions: east and west
- Three types of train (6 classes of train, including direction)

Rail performance, p. 2

- Priorities used to model meets and overtakes
- Meets occur when trains travel in opposite directions and one must take siding and wait until other passes
- Overtakes occur when trains traveling in same direction interact, and slower one takes siding to let faster one go by
- Assume all sidings are long enough
- We want to model the running time for each class of train over a segment of railroad, as a function of:
- Number of trains of each class (type, direction)
- Speed of trains
- Number of sidings
- Priorities, and other, less important variables
- Our linear model will give nonlinear performance behavior!

Delay matrix D

- Matrix D gives average delay for each interaction (meet or overtake) between two classes of train
- We will then multiply this by the expected number of interactions, to get total delay
- Delay matrix D has coefficients $D_{i j}$:

$$
D_{i j}=p_{i j} S_{i}+\frac{60 p_{i j}^{2}}{2(b+1)}\left|\frac{d}{v_{i}}-\frac{d}{v_{j}}\right|
$$

- $D_{i j}=$ Expected delay to train i due to train j, in minutes
- $S_{i}=$ Time to take siding for train i, in minutes (5 minutes)
$-p_{i j}=$ Relative number of times train i waits for train $j\left(0<=p_{i j}<=1\right)$
- b= Number of sidings (19)
- $D=$ Distance of railroad segment being modeled, in miles (400 mi)
$-v_{i}=$ Free running velocity for train i, in miles per hour

Delay matrix D

Figure by MIT OpenCourseWare.

Probability, delay matrices

Prob(delay)	NB way	WB thru		WB pass	EB pass	EB thru			EB way
WB way	0	0.7	0.9	1	0.7	0.5			
WB thru	0.3	0	0.7	0.7	0.5	0.3			
WB pass	0.1	0.3	0	0.5	0.3	0			
EB pass	0	0.3	0.5	0	0.3	0.1			
EB thru	0.3	0.5	0.7	0.7	0	0.3			
EB way	0.5	0.7	1	0.9	0.7	0			

Delay	WB way	WB thru	WB pass	EB pass	EB thru	EB way	
WB way	0	9.4	17.9	36.5	21.1	14.5	
WB thru	2.6	0	5.7	13.1	8.5	4.7	
WB pass	0.7	1.9	0	6.3	3.3	0	
EB pass	0	3.3	6.3	0	1.9	0.7	
EB thru	4.7	8.5	13.1	5.7	0	2.6	
EB way	14.5	21.1	36.5	17.9	9.4	0	

Derivation of linear system

- Let
- $W_{i}=$ average time for train of class i, including delays
- $T_{i}=$ free running time for train of class I (input)
- $\mathrm{D}_{\mathrm{ij}}=$ delays due to meets and overtakes to train of class I due to trains of class j
- $M_{i j}=$ number of meets and overtakes between train of class I and trains of class j
- Average time for train to travel across segment:

$$
W_{i}=T_{i}+\sum_{j}\left(D_{i j} \cdot M_{i j}\right)
$$

- Interactions between train \mathbf{i} and trains of class \mathbf{j} :

$$
M_{i j}=N_{j}\left(W_{j}+W_{i}\right) / 1440
$$

- $M_{i j}=$ number of trains/day in class j times fraction of day that train of class i can interact with trains of class j
- If EB train takes $\mathbf{1 2}$ hours ($\mathbf{7 2 0}$ minutes) to cover line, as does WB, it will meet every WB train that operates that day
- If EB train took only $\mathbf{6}$ hours, it would have half the interactions

Derivation of linear system, p. 2

$W_{i}=T_{i}+\sum_{i}\left(D_{i j} \cdot M_{i j}\right) \quad M_{i j}=N_{j}\left(W_{j}+W_{i}\right) / 1440$

- The rest is algebra, to write the two equations above in the form AW= T, with W the unknown ("x")
$W_{i}=T_{i}+\sum_{j} \frac{D_{i j} \cdot N_{j}}{1440}\left(W_{j}+W_{i}\right)$
Collect Wi terms on left side of equation :
$W_{i}-\sum_{j} \frac{D_{i j} \cdot N_{j}}{1440}\left(W_{j}+W_{i}\right)=T_{i}$
Rearrange terms to separate Wi and Wjterms:

The Wi coefficient is the diagonal; the Wj coefficients
are the off - diagonal elements in matrix A

- There is a $+l-$ sign convention handled by a matrix C (multiplies $D_{i j}$):
- $c[i][j]=-1$ if $j<i<=2$ or ($3<=i<j$), 0 otherwise (with 6 train classes)

Data members, constructor

```
public class RailDelay {
    private int n; /| Number of train classes
    private int d; /| Distance in miles
    private Int b; I| Number ot sidings
    private double[][] p; /| Probability of delay in interaction
    private double[] s; /| Time to take siding, by train class
    private double[] v; l| Velocity by train class
    private double[][] c; /| Matrix that indicates if interaction
    |/ is pass or meet, by train classes involved
    private int[] nTrain; /| Number of trains by class, per day
    public RailDelay(String filename) {
        |/ Constructor reads inputs from file, sets data members
    }
```


getDelay()

```
public double[] get Delay() {
    double[][] dm= new double[n][n]; |/ Delay matrix D
    for (int i= 0; i < n; i ++)
            for (int j=0; j < n; j+t) {
                dm[i][j]= p[i][j]*s[i] + 60.0*p[i][j]*p[i][j] *
                Math.abs(d/v[i]-d/v[j])/(2.0*(b+1)); }
    double[] t= new double[n]; |/ Free running time T
    for (int i=0; i < n; i ++)
            t[i]= d*60.0/v[i];
    double[][] a= new double[n][n]; |/ Total delay matrix A
    for (int i=0; i < n; i ++) {
            double delay=0.0;
            for (int j=0; j < n; j+t) {
            if (i != j) {
                a[i][j]= dm[i][j]*nTrain[j]*c[i][j]/1440;
                delay t= a[i][j];
            } }
            a[i][i]=1.0 - delay; }
    double[] w= Gauss.gaussian(a, t);
    return w;
}
```


main(), sample output

```
    public static void main(String[] args) {
        RailDelay r= new RailDelay("src/linear/rail.txt");
        double[] w= r.getDelay(); |/ Gets output w
        int n= w.length;
        System.out.printIn("i Act time Free time");
        for (int i= 0; i < n; i ++)
                System.out.printf("%d %8.1f %8.1f \n",i,
                    Math.abs(w[i]), Math.abs(r.get FreeTime(i)));
        System.out.println();
    }
|/ Sample output: 3 wayfreight, 4 thru freight, 2 passenger
                        i Act time Free time
        0 1265.2 960.0
        1 544.9 480.0
        2 315.8 300.0
        3 315.8 300.0
        4 544.9 480.0
        5 1265.2 960.0
```


Rail performance estimate

Figure by MIT OpenCourseWare.

Summary

- Linear models are a reasonable starting point in many cases to understand complex systems
- Writing down equations to model a system analytically or through solving linear or nonlinear systems is often a viable option
- Linear models can produce nonlinear behavior
- In the rail example, this is more intuitive (for some of us) and more robust than simulation
- I used essentially the rail analysis in a Vermont Act 250 expert witness case
- Traffic impacts on a neighborhood from a large development
- Narrow road with parking on both sides
- Number of "meets" between cars would increase very sharply
- Project application was denied
- We'll use linear systems as a "subproblem" in next lecture

MIT OpenCourseWare
http://ocw.mit.edu

1.204 Computer Algorithms in Systems Engineering

Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

