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Lecture 4 OutlineLecture 4 Outline

� Conceptual Networks: Definitions 
� Representation of an Urban Road Network (Supply) 
� Shortest Paths (Reading: pp. 359-367, 6.2.3 and 6.2.4 of R6) 

• Introduction 
• Dijkstra’s algorithm: example 
• Dijkstra’s algorithm: statement 
• Observations 

� Extensions to Classical Shortest Path Problems 
� All-or-nothing traffic assignment 
� Zoning and Analysis Periods (Demand) 
� Motivation for more advanced traffic assignment models 
� Summary 



2

1.225, 11/07/02 Lecture 4, Page 3 

Conceptual Networks: DefinitionsConceptual Networks: Definitions
� A network is: 

• a set of nodes N and a set of links A 
• nodes are also called vertices or points 
• links are also called arcs or edges 

� Directed networks: all links are directed 
� Path: a sequence of links from one node to another node 

(i.e., (5,4)-(4,3)-(3,2)) 
� A network is connected if there is at least one path from one node to 

another node (Net1 is connected whereas Net2 is not) 

� Examples: 
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Representation of an Urban Road NetworkRepresentation of an Urban Road Network

� Physical � Conceptual 
Intersections Nodes 
Streets Links 
Zones Centroids 

� Simple node representation 
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Intersection RepresentationsIntersection Representations
� Simple node representation: 

• no direction differenciation 
• no conflicting movement 

� Subnetwork representation: 
• explicit direction representation 
• conflicting turns in an intersection 

are captured by internal links and 
their impedances 

� Conceptual representation is not unique and 
depends on: 

• type of analysis 
• data availability to build, validate, and apply model 
• accuracy vs. computation time trade-off 
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Shortest Path ProblemsShortest Path Problems

� Basic problem: find a shortest path and the shortest distance between 
two nodes 

� Basic problem is called the one-to-one shortest path problem 
� Types of shortest path problems: 

• One-to-one 
• One-to-all: find shortest paths from one node to all nodes 
• All-to-one: find shortest paths from all nodes to one node 
• Many-to-many: find shortest paths from many nodes to many 

other nodes 
• All-to-all: find shortest paths from all node pairs 

� “Shortest” also denotes minimum general cost 
� There are hundreds of shortest path algorithms, but they are similar 
� Some algorithms work for non-negative costs only 
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DijkstraDijkstra’’s Shortest Paths Algorithm: Examples Shortest Paths Algorithm: Example
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First Shortest Path Algorithm (First Shortest Path Algorithm (DijkstraDijkstra’’s Algorithm)s Algorithm)

� Notation: 
• s: source node 
• d(j): length of shortest path from s to j discovered so far 
• p(j): immediate predecessor to node j on shortest path from s to j 

discovered so far 
• k: last node selected by algorithm 

� Step 1: Initialization 
• d(s) = 0, p(s) = * 
• d(j) = ∝, p(j) = -, for all other nodes j ≠ s 
• k = s 
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DijkstraDijkstra’’s Shortest Paths Algorithm: Examples Shortest Paths Algorithm: Example
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First Shortest Path Algorithm (First Shortest Path Algorithm (DijkstraDijkstra’’s Algorithm)s Algorithm)

� Step 2: Update labels of neighbors in open state 
• For all (k, j), if j is open do: 

If d(j) < d(k) + l(k, j) then 
d(j) = d(k) + l(k, j) 
p(j) = k 

� Step 3 
• Find a open state node i such that d(i) = min{d(j), j is an open node)} 

� Step 4 
• Find a closed state node j* such that d(i) = d(j*) + l(j*,i) 

� Step 5 
• Node i is closed. If no node in open state , STOP. 

Otherwise k = i, return to Step 2 
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Shortest Paths Algorithm: ExampleShortest Paths Algorithm: Example
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Shortest Paths Algorithm: ExampleShortest Paths Algorithm: Example
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Shortest Paths Algorithm: ExampleShortest Paths Algorithm: Example
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Shortest Paths Algorithm: ExampleShortest Paths Algorithm: Example
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Observations aboutObservations about DijkstraDijkstra’’s Algorithms Algorithm

� Dijkstra’s algorithm is in general not valid if some l(i, j) < 0 
� Shortest paths form a tree 
� The algorithm can also solve the all-to-one problem 
� If you solve for a one-to-many problem, stop the algorithm when all 

destination nodes are closed 
� Shortest path problem is an LP problem, but it is more efficient and 

intuitive to look at it as a network problem as we did in class 
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Extensions of Shortest Path ProblemExtensions of Shortest Path Problem

� There is a huge number of potential extensions of the classical 
shortest path problem 

� Problems on dynamic networks (link lengths change over time) 
� Problems on probabilistic networks (link lengths are random 

variables assuming discrete values or a continuous range of values) 
� Combinations thereof 
� Solutions to these problems depend on the assumptions regarding the 

state of knowledge and on the relative magnitude of the parameters 
involved 

� The meaning of “shortest path” is also an issue in some cases 
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A Traffic Assignment ProblemA Traffic Assignment Problem
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““AllAll--oror--nothingnothing”” Traffic AssignmentTraffic Assignment
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Traffic Assignment ModelsTraffic Assignment Models

� Conceptual definition: 

� Principles of assignment to represent the interaction 
• User Optimal (U.O.): O-D flows are assigned to paths with 

minimum travel time 
• System Optimal (S.O.): O-D flows are assigned such that total 

travel time on the network is minimum 

Supply/Demand 
Interaction 

Flows and Travel Times 

(input) 

output 

Supply 

• Network representation of 
transportation network 

• Link performance functions 

Demand 

• Origin-destination flows 
• Zoning  

(input) 
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ZoningZoning

� Physical zones 
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� Centroid nodes and Connectors 

� Zone-to-zone Flows 

� O/D Flows 

Zone 1 Zone 2 Zone 3 Zone 4 
Zone 1 0 90 120 80 
Zone 2 100 0 60 130 
Zone 3 120 180 0 50 
Zone 4 40 70 150 0 

1 2 3 4 
1 0 90 120 80 
2 100 0 60 130 
3 120 180 0 50 
4 40 70 150 0 
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Analysis PeriodsAnalysis Periods

� Over an analysis period, flows are assumed constant in order for steady-
state analysis to apply 

� The duration of a period is longer than a trip 
� Typical analysis periods: morning-peak, midday, evening-peak 

time of day 

flows 

Morning-peak 
period 

Midday period Evening-peak 
period 
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Lecture 4 SummaryLecture 4 Summary

� Conceptual Networks: Definitions 
� Representation of an Urban Road Network (Supply) 
� Shortest Paths (Reading: pp. 359-367, 6.2.3 and 6.2.4 of R6) 

• Introduction 
• Dijkstra’s algorithm: example 
• Dijkstra’s algorithm: statement 
• Observations 

� Extensions to Classical Shortest Path Problems 
� All-or-nothing traffic assignment 
� Zoning and Analysis Periods (Demand) 
� Motivation for more advanced traffic assignment models 


