1.225J (ESD 225) Transportation Flow Systems

Lecture 4
Introduction to Network Models and Shortest Paths

Profs. Ismail Chabini and Amedeo Odoni

Lecture 4 Outline

\square Conceptual Networks: Definitions
\square Representation of an Urban Road Network (Supply)
\square Shortest Paths (Reading: pp. 359-367, 6.2.3 and 6.2.4 of R6)

- Introduction
- Dijkstra's algorithm: example
- Dijkstra's algorithm: statement
- Observations
\square Extensions to Classical Shortest Path Problems
\square All-or-nothing traffic assignment
\square Zoning and Analysis Periods (Demand)
\square Motivation for more advanced traffic assignment models
\square Summary

Conceptual Networks: Definitions

\square A network is:

- a set of nodes N and a set of links A
- nodes are also called vertices or points
- links are also called arcs or edges
\square Examples:

\square Directed networks: all links are directed
\square Path: a sequence of links from one node to another node

$$
\text { (i.e., }(5,4)-(4,3)-(3,2))
$$

\square A network is connected if there is at least one path from one node to another node (Net1 is connected whereas Net2 is not)

Representation of an Urban Road Network

Physical
Intersections
Streets
Zones
\square Conceptual
Nodes
Links
Centroids
\square Simple node representation

Intersection Representations

\square Simple node representation:

- no direction differenciation
- no conflicting movement
\square Subnetwork representation:
- explicit direction representation
- conflicting turns in an intersection are captured by internal links and their impedances
\square Conceptual representation is not unique and depends on:

- type of analysis
- data availability to build, validate, and apply model
- accuracy vs. computation time trade-off

Shortest Path Problems

\square Basic problem: find a shortest path and the shortest distance between two nodesBasic problem is called the one-to-one shortest path problem
\square Types of shortest path problems:

- One-to-one
- One-to-all: find shortest paths from one node to all nodes
- All-to-one: find shortest paths from all nodes to one node
- Many-to-many: find shortest paths from many nodes to many other nodes
- All-to-all: find shortest paths from all node pairs
\square "Shortest" also denotes minimum general cost
\square There are hundreds of shortest path algorithms, but they are similar \square Some algorithms work for non-negative costs only

Dijkstra's Shortest Paths Algorithm: Example

First Shortest Path Algorithm (Dijkstra's Algorithm)

\square Notation:

- s : source node
- $d(j)$: length of shortest path from s to j discovered so far
- $p(j)$: immediate predecessor to node j on shortest path from s to j discovered so far
- k : last node selected by algorithm
\square Step 1: Initialization
- $d(s)=0, p(s)=*$
- $d(j)=\propto, p(j)=-$, for all other nodes $j \neq s$
- $k=s$

First Shortest Path Algorithm (Dijkstra's Algorithm)

\square Step 2: Update labels of neighbors in open state

- For all (k, j), if j is open do:

$$
\text { If } \begin{aligned}
d(j)<d(k)+l(k, j) \text { then } \\
\left.\qquad \begin{array}{l}
d(j)=d(k)+l(k, j) \\
p(j)
\end{array}\right)
\end{aligned}
$$

\square Step 3

- Find a open state node i such that $d(i)=\min \{d(j), j$ is an open node $)\}$ \square Step 4
- Find a closed state node j^{*} such that $d(i)=d\left(j^{*}\right)+l\left(j^{*}, i\right)$
\square Step 5
- Node i is closed. If no node in open state, STOP.

Otherwise $k=i$, return to Step 2

Shortest Paths Algorithm: Example

Shortest Paths Algorithm: Example

Shortest Paths Algorithm: Example

Observations about Dijkstra's Algorithm

\square Dijkstra's algorithm is in general not valid if some $l(i, j)<0$
\square Shortest paths form a tree
\square The algorithm can also solve the all-to-one problem
\square If you solve for a one-to-many problem, stop the algorithm when all destination nodes are closed
\square Shortest path problem is an LP problem, but it is more efficient and intuitive to look at it as a network problem as we did in class

Extensions of Shortest Path Problem

\square There is a huge number of potential extensions of the classical shortest path problem
\square Problems on dynamic networks (link lengths change over time)\square Problems on probabilistic networks (link lengths are random variables assuming discrete values or a continuous range of values)
\square Combinations thereof
\square Solutions to these problems depend on the assumptions regarding the state of knowledge and on the relative magnitude of the parameters involved
\square The meaning of "shortest path" is also an issue in some cases

Conceptual definition:

- Network representation of transportation network
- Link performance functions

Flows and Travel Times

\square Principles of assignment to represent the interaction

- User Optimal (U.O.): O-D flows are assigned to paths with minimum travel time
- System Optimal (S.O.): O-D flows are assigned such that total travel time on the network is minimum

Zoning

Physical zones

Centroid nodes and Connectors

Analysis Periods

Over an analysis period, flows are assumed constant in order for steadystate analysis to apply
\square The duration of a period is longer than a trip
\square Typical analysis periods: morning-peak, midday, evening-peak

Lecture 4 Summary

\square Conceptual Networks: Definitions
\square Representation of an Urban Road Network (Supply)
\square Shortest Paths (Reading: pp. 359-367, 6.2.3 and 6.2.4 of R6)

- Introduction
- Dijkstra's algorithm: example
- Dijkstra's algorithm: statement
- Observations
\square Extensions to Classical Shortest Path Problems
\square All-or-nothing traffic assignment
\square Zoning and Analysis Periods (Demand)
\square Motivation for more advanced traffic assignment models

