An Example of M/M/1 Queue

\square An airport runway for arrivals only
\square Arriving aircraft join a single queue for the runway
\square Exponentially distributed service time with a rate

$$
\mu=27 \text { arrivals / hour (As you computed in PS1.) }
$$

\square Poisson arrivals with a rate $\lambda=20$ arrivals / hour
$\square_{W}=\frac{1}{\mu-\lambda}=\frac{1}{27-20}=\frac{1}{7}$ hour $\approx 8.6 \mathrm{~min}$
$\square_{L=\lambda W}=\frac{\lambda}{\mu-\lambda}=\frac{20}{27-20} \approx 2.9$ aircrafts

- $W_{q}=W-\frac{1}{\mu}=\frac{1}{\mu-\lambda}-\frac{1}{\mu}=\frac{1}{27-20}-\frac{1}{27} \approx 6.4 \mathrm{~min}$
$\square L_{q}=\lambda W_{q}=\frac{\lambda^{2}}{\mu(\mu-\lambda)}=\frac{20^{2}}{27(27-20)} \approx 2.1$ aircrafts

An Example of M/M/1 Queue (cont.)

\square Now suppose we are in holidays and the arrival rate increases $\lambda=25$ arrivals / hour
\square How will the quantities of the queueing system change?
$\square=\frac{1}{\mu-\lambda}=\frac{1}{27-25}=\frac{1}{2}$ hour $=30 \mathrm{~min}$
$\square L=\lambda W=\frac{\lambda}{\mu-\lambda}=\frac{25}{27-25}=12.5$ aircrafts
$\square W_{q}=W-\frac{1}{\mu}=\frac{1}{\mu-\lambda}-\frac{1}{\mu}=\frac{1}{27-25}-\frac{1}{27}=27.8 \mathrm{~min}$
$\square L_{q}=\lambda W_{q}=\frac{\lambda^{2}}{\mu(\mu-\lambda)}=\frac{25^{2}}{27(27-25)} \approx 11.6$ aircrafts

An Example of M/M/1 Queue (cont.)

\square Now suppose we have a bad weather and the service rate decreases

$$
\mu=22 \text { arrivals } / \text { hour }
$$

\square How will the quantities of the queueing system change?
$\square=\frac{1}{\mu-\lambda}=\frac{1}{22-20}=\frac{1}{2}$ hour $=30 \mathrm{~min}$
$\square L=\lambda W=\frac{\lambda}{\mu-\lambda}=\frac{20}{22-20}=10$ aircrafts
$\square W_{q}=W-\frac{1}{\mu}=\frac{1}{\mu-\lambda}-\frac{1}{\mu}=\frac{1}{22-20}-\frac{1}{22} \approx 27.3 \mathrm{~min}$
$\square L_{q}=\lambda W_{q}=\frac{\lambda^{2}}{\mu(\mu-\lambda)}=\frac{20^{2}}{22(22-20)} \approx 9.1$ aircrafts

