1.225J (ESD 205) Transportation Flow Systems

Lecture 1

Cumulative Plots \& Time-Space Diagrams

Prof. Ismail Chabini and Prof. Amedeo Odoni

Cumulative Plots

\square Observer: count the total number of vehicles, $N(t)$, that passed in front of him/her during time interval $[0, t]$.

Link entry
Link exit

Observations on $N(t)$

$\square N(t)$ is a step function. (not smooth)
$\square \tilde{N}(t)$ is a smooth approximation of $N(t) \Rightarrow \frac{d \tilde{N}(t)}{d t}$ exists.
$\square(t)=\frac{d \tilde{N}(t)}{d t}$: instantaneous flow at time t.
\square Average flow $=\frac{N(T)-N(0)}{T} \cong \begin{gathered}\tilde{N}(T)-N(0) \\ T\end{gathered}$

Arrival-Departure Cumulative Plots

Accumulated Items: $Q(t)=A(t)-D(t)$?

$Q(t)$: number of items (cars, planes) accumulated between the two observers.
$\square Q(t)=Q(0)+[A(t)-A(0)]-[D(t)-D(0)]$

$$
\begin{aligned}
& =(Q(0)+D(0)-A(0))+A(t)-D(t) \\
& =A(t)-D(t) \quad(\text { if } Q(0)+D(0)-A(0)=0)
\end{aligned}
$$

Waiting Under FIFO Order

\square Vehicles depart in the same order as they entered a link (i.e. segment of road) \equiv (First-In-First-Out) FIFO
\square Item n is observed at the entrance of a link at time $A^{-1}(n)$.

Item n is observed at the exit of a link at time $D^{-1}(n)$.

Waiting time of the item $n: w(n)=D^{-1}(n)-A^{-1}(n)$

$Q(t), w(n)$, and Elemental Waiting

Total Waiting Time

\square Elemental waiting during $[t, t+d t]: Q(t) d t$
\square Total waiting during $\left[t_{0}, t_{l}\right]: \quad$ Area $=\int_{t_{0}}^{t_{1}} Q(t) d t=\int_{t_{0}}^{t_{1}}(A(t)-D(t)) d t$
\square Elemental waiting during $[n, n+d n]: w(n) d n$
Total waiting during $\left[0, n_{l}\right]: \quad$ Area $=\int_{0}^{n 1} w(n) d n$
\square Average wait suffered by vehicle arriving between t_{0} and t_{1}

$$
\begin{aligned}
& \bar{W}=\frac{\text { Area }}{A\left(t_{1}\right)-A\left(t_{0}\right)}=\frac{\text { Area }}{t_{1}-t_{0}} \times \frac{t_{1}-t_{0}}{A\left(t_{1}\right)-A\left(t_{0}\right)}=\bar{Q} \times \frac{1}{\bar{\lambda}} \\
& \Rightarrow \bar{Q}=\bar{\lambda} \times \bar{W} \quad \text { (Queuing formula) }
\end{aligned}
$$

Time-Space Diagram: Analysis at a Fixed Position

1.225, 10/29/02

Lecture 1, Page 9

Flows and Headways

$\square m(x)$: number of vehicles that passed in front of an observer at position x during time interval $[0, T] .($ ex. $m(x)=5)$
\square Flow rate: $q(x)=\frac{m(x)}{T}$
\square Headway $h_{j}(x)$: time separation of consecutive vehicles
Average headway: $\bar{h}(x)=\frac{\sum_{j=1}^{m(x)} h_{j}(x)}{m(x)-1}$
\square What is the relationship between $q(x)$ and $\bar{h}(x)$?

Flow Rate vs. Average Headway

\square If T is large, $T \approx \sum_{j=1}^{m(x)} h_{j}(x)$
Then, $\frac{1}{q(x)}=\frac{T}{m(x)} \approx \sum_{m(x)}^{\sum_{j=1}^{m(x)} h_{j}(x)}=h(x)$
$\Rightarrow q(x) \approx \frac{1}{\bar{h}(x)} \quad$ This is intuitively correct.
$q(x)$ is also called volume in traffic flow systems circles (i.e. 1.225)
$q(x)$ is also called frequency in scheduled systems circles (i.e. 1.224)

Time-Space Diagram: Analysis at Fixed Time

Density and Spacing

$\square n(t)$: number of vehicles in a stretch of length L at time t.
\square Density $k(t)=\frac{n(t)}{L}$
$s_{i}(t)$: spacing between vehicle i and vehicle $i+1$.
$\square Z \approx \sum_{i=1}^{n(t)} s_{i}(t)$
$\square \frac{1}{k(t)}={ }_{n(t)}^{L} \sum_{i=1}^{n(t)} s_{i}(t)=s(t)$

- $k(t) \approx \frac{1}{\bar{s}(t)} \quad$ (Is this intuitive?)

Lecture 1 Summary

\square Cumulative plots: $A(t), D(t), Q(t), w(n) \quad \Longrightarrow \bar{Q}=\bar{\lambda} \times \bar{W}$

Time-Space Diagram: Analysis at a fixed position
$\Rightarrow q(x) \approx \frac{1}{\bar{h}(x)}$
\square Time-Space Diagram: Analysis at a fixed time
$\Rightarrow k(t) \approx \frac{1}{\bar{s}(t)}$

