1.225J (ESD 225) Transportation Flow Systems

Lecture 10

Control of Isolated Traffic Signals

Profs. Ismail Chabini and Amedeo R. Odoni

Lecture 10 Outline

\square Isolated saturated intersections
\square Definitions: Saturation flow rate, effective green, and lost timeNotation for an intersection approach variableTwo assumptions for delay modelsAverage delay per vehicle: deterministic term $W_{q, A}$
\square Average delay per vehicle: stochastic term $\bar{W}_{q, B}$
\square Webster optimal green time settings: two approaches intersection and numerical exampleWebster cycle time optimization procedureMid-day and evening-peak examplesLecture summary
An implication of saturation regime: need to efficiently allocate green times $\left(g_{N}, g_{S}\right)$ and $\left(g_{E}, g_{W}\right)$

Saturation Flow, Effective Green, and Lost Time

- Total lost time $l=l_{1}+l_{2}$ (typically 2 sec)
- Green $(k)+\operatorname{Amber}(a)=$ Effective green time $(g)+$ Total lost time $(l) \Rightarrow l=k+a-g$
- Effective green time $(g) \times$ Saturation flow $(s)=$ Total vehicles discharged during $(k+a)$

Notations for An Intersection Approach

\square Webster

- s : saturation flow rate
- g : effective green time
- c : cycle time
- $\lambda=\frac{g}{c}$: fraction of effective green in cycle time
\square Webster
$q \quad$ arrival rate (veh/unit of time) $\quad \lambda$
$\lambda s \quad$ average flow rate at exit of an approach μ
$x=\frac{q}{\lambda s}$
degree of saturation
$\rho=\frac{\lambda}{\mu}$
$\square y=\frac{q}{s}$
1.225, 12/3/02

Two Assumptions for Delay Models

\square Assumption (A):

- The interarrival times are constant (view arrivals as evenly spaced at rate q)
- Service time is constant during effective green and zero in the rest of the cycle
- Average waiting per vehicle is denoted by $\bar{W}_{q, A}$
\square Assumption (B):
- The interarrival times are exponentially distributed with rate q
- Service time is constant with service rate λs
- Average waiting per vehicle is denoted by $\bar{W}_{q, B}$
\square Webster formula for total waiting time per vehicle:
$d=\bar{W}_{q, A}+\bar{W}_{q, B}-$ correction factor obtained by simulation

Average Delay per Vehicle: Term $\bar{W}_{q, A}$

\square Total waiting during c per approach:
$\frac{1}{2} q(c-g)\left[(c-g)+\frac{q(c-g)}{s-q}\right]=\frac{q(c-g)^{2}}{2} \cdot \frac{s}{s-q}=\frac{q(c-g)^{2}}{2} \cdot \frac{1}{(1-\lambda x)}$
\square Total arrivals during cycle $c: q c$
$\square \bar{W}_{q, A}=\left\{\frac{q(c-g)^{2}}{2} \cdot \frac{1}{(1-\lambda x)}\right\} \cdot \frac{1}{q c}=\frac{c}{2} \cdot \frac{(1-g / c)^{2}}{(1-\lambda x)}=\frac{c(1-\lambda)^{2}}{2(1-\lambda x)}$
1.225, 12/3/02

Average Delay per Vehicle: Term $\overline{\boldsymbol{W}}_{q, B}$

\square Interarrival times are exponentially distributed with rate q, and service times are deterministic with rate λs
\square Average waiting time for $M / D / 1$ queueing system: $\frac{1}{2} \cdot \frac{\rho^{2}}{\lambda(1-\rho)}$
$\square \bar{W}_{q, B}=\frac{1}{2} \cdot \frac{(q / \lambda s)^{2}}{q(1-q / \lambda s)}=\frac{1}{2} \cdot \frac{x^{2}}{q(1-x)}$

Webster's Average Delay Per Vehicle Model

\square Average delay per vehicle: $d=\bar{W}_{q, A}+\bar{W}_{q, B}-$ correction term
$d=\frac{c(1-\lambda)^{2}}{2(1-\lambda x)}+\frac{x^{2}}{2 q(1-x)}-0.65\left(\frac{c}{q^{2}}\right)^{\frac{1}{3}} x^{(2+5 \lambda)}$
$\square \bar{W}_{q, A}$ dominates for very small values of x
$\square \bar{W}_{q, B}$ dominates for large values of $x(x \rightarrow 1)$

Small value of x is not an important case from an optimization standpoint
\square Optimal green time setting problem: Find $\lambda_{E}, \lambda_{W}, \lambda_{N}$, and λ_{S} such that the total delay is minimum
\square

Observed Delay vs. Webster's Model

"Optimal Settings": A Two Approaches Intersection

$\square x_{1}=\frac{q_{1}}{\lambda_{1} s_{1}}, \quad x_{2}=\frac{q_{2}}{\lambda_{2} s_{2}}$
\square Note: • $\left(q_{1}, s_{1}\right)$ and $\left(q_{2}, s_{2}\right)$ are given

- $\left(\lambda_{1}+\lambda_{2}\right) \mathrm{c}=c$
- if $x_{1} \uparrow$, then $x_{2} \downarrow$ and vice versa
\square Total delay $\approx \bar{W}_{q, B}^{(1)} \cdot q_{1}+\bar{W}_{q, B}^{(2)} \cdot q_{2}$

$$
=\frac{1}{2} \sum_{i=1}^{2} \frac{x_{i}^{2}}{q_{i}\left(1-x_{i}\right)} \cdot q_{i}=\frac{1}{2} \sum_{i=1}^{2} \frac{x_{i}^{2}}{\left(1-x_{i}\right)}
$$Minimum total delay: Total delays are about the same on both approaches

- $\frac{x_{1}^{2}}{1-x_{1}}=\frac{x_{2}^{2}}{1-x_{2}}$
- $x_{1}=x_{2}$
- $\frac{\lambda_{2}}{\lambda_{1}}\left(=\frac{g_{2} / c}{g_{1} / c}=\frac{g_{2}}{g_{1}}\right)=\frac{q_{2} / s_{2}}{q_{1} / s_{1}}\left(=\frac{y_{2}}{y_{1}}\right)$

Numerical Example 1

- Saturation flow rate $s=1800 \mathrm{veh} / \mathrm{hr}$ for all arms (approaches)

Lost time $L=10 \mathrm{sec}$
Cycle length $c=60 \mathrm{sec}$

- $q_{N}=q_{S}=600 \mathrm{veh} / \mathrm{hr} ; q_{E}=q_{W}=300 \mathrm{veh} / \mathrm{hr}$
- $y_{N}=y_{S}=\frac{600}{1800}=\frac{1}{3} ; y_{E}=y_{W}=\frac{300}{1800}=\frac{1}{6}$
- $y_{N-S}=\frac{1}{3} ; \quad y_{E-W}=\frac{1}{6}$
- $\frac{g_{N-S}}{g_{E-W}}=\frac{1 / 3}{1 / 6}=2$
- $g_{N-S}+g_{E-W}=60-10=50 \mathrm{sec}$
- $2 g_{E-W}+g_{E-W}=3 g_{E-W}=50 \mathrm{sec} \Rightarrow g_{E-W}=50 / 3 \approx 17 \mathrm{sec} ; \quad g_{N-S} \approx 33 \mathrm{sec}$

Cycle Time Optimization

\square "Optimal"cycle: $c_{o}=\frac{1.5 L+5}{1-y}$
$\square=\sum_{i=1}^{n} y_{i}, \quad n=$ number of phases (typically $n=2$)
$\square=n l+R, \quad\left\{\begin{array}{l}l=\text { average time lost per phase }(l \approx 2 \mathrm{sec}) \\ R=\operatorname{all}-\operatorname{red} \operatorname{time}(R \approx 6 \mathrm{sec})\end{array}\right.$Typically $L \approx 10 \mathrm{sec}$Two phases :

Numerical Example 2: Mid-Day

- $s=1600 \mathrm{veh} / \mathrm{hr}$ in each direction $(N \rightarrow S ; S \rightarrow N ; E \rightarrow W ; W \rightarrow E)$

2 phases; all reds $=6 \mathrm{sec} /$ cycle; lost time $=2 \mathrm{sec} /$ phase

- $q_{N}=q_{S}=600 \mathrm{veh} / \mathrm{hr} ; q_{W}=400 \mathrm{veh} / \mathrm{hr} ; q_{E}=300 \mathrm{veh} / \mathrm{hr}$
- $y_{N}=y_{S}=\frac{600}{1600}=\frac{3}{8} ; \quad y_{W}=\frac{400}{1600}=\frac{2}{8} ; \quad y_{E}=\frac{300}{1600}=\frac{3}{16}$
- $y_{N-S}=\frac{3}{8} ; \quad y_{E-W}=\frac{2}{8} ; \quad y=\frac{3}{8}+\frac{2}{8}=\frac{5}{8} ; \quad L=2 \cdot 2+6=10 \mathrm{sec}$
- $c_{o}=\frac{1.5 \times 10+5}{1-5 / 8}=53 \mathrm{sec}$; optimal cycle
- $g_{N-S} \cong \frac{3}{5}(53-10) \approx 26 \mathrm{sec} ; \quad g_{E-W} \cong \frac{2}{5}(53-10)=17 \mathrm{sec}$
- $x_{N}=x_{S}=0.764 ; \quad x_{W}=0.779 ; \quad x_{E}=0.585$
- $\bar{W}_{q, N}=\bar{W}_{q, S} \cong 18.4 \mathrm{sec} ; \quad \bar{W}_{q, W} \cong 28.6 \mathrm{sec} ; \quad \bar{W}_{q, E} \cong 20.0 \mathrm{sec}$
- $\bar{L}_{q, N}=\bar{L}_{q, S} \cong 3.07 \mathrm{veh} ; \quad \bar{L}_{q, W} \cong 3.18 \mathrm{veh} ; \quad \bar{L}_{q, E} \cong 1.67 \mathrm{veh}$
- Total delay $/ \mathrm{hr} \cong 11$ hours

Numerical Example 2(cont.): Evening-Peak

- $s=1600 \mathrm{veh} / \mathrm{hr}$ in each direction $(N \rightarrow S ; S \rightarrow N ; E \rightarrow W ; W \rightarrow E)$ 2 phases; all reds $=6 \mathrm{sec} / \mathrm{cycle}$; lost time $=2 \mathrm{sec} /$ phase
- $q_{N}=q_{S}=800 \mathrm{veh} / \mathrm{hr} ; q_{W}=q_{E}=600 \mathrm{veh} / \mathrm{hr}$
- $y_{N}=y_{S}=\frac{800}{1600}=\frac{1}{2} ; \quad y_{W}=y_{E}=\frac{600}{1600}=\frac{3}{8}$
- $y_{N-S}=\frac{1}{2} ; \quad y_{E-W}=\frac{3}{8} ; \quad y=\frac{1}{2}+\frac{3}{8}=\frac{7}{8} ; \quad L=2 \cdot 2+6=10 \mathrm{sec}$
- $c_{o}=\frac{1.5 \times 10+5}{1-7 / 8}=160 \mathrm{sec}$; optimal cycle
- $g_{N-S} \cong \frac{4}{7}(160-10) \approx 86 \mathrm{sec} ; \quad g_{E-W} \cong \frac{3}{7}(160-10)=64 \mathrm{sec}$
- $x_{N}=x_{S}=0.93 ; \quad x_{W}=x_{E}=0.9375$
- $\bar{W}_{q, N}=\bar{W}_{q, S} \cong 62.0 \mathrm{sec} ; \quad \bar{W}_{q, W}=\bar{W}_{q, E} \cong 88.3 \mathrm{sec}$
- $\bar{L}_{q, N}=\bar{L}_{q, S} \cong 13.8 \mathrm{veh} ; \quad \bar{L}_{q, W}=\bar{L}_{q, E} \cong 14.7 \mathrm{veh}$
- Total delay/hr $\cong 57$ hours

Lecture 10 Summary

\square Isolated saturated intersections
\square Definitions: Saturation flow rate, Effective green, and Lost time
\square Notations for an intersection approach variable
\square Two assumptions for delay models
\square Average delay per vehicle: deterministic term $W_{q, A}$
\square Average delay per vehicle: stochastic term $W_{q, B}$
\square Webster optimal green time settings: Two approaches intersection and numerical example
\square Webster cycle time optimization procedure
\square Mid-day and evening-peak examples

