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Lecture 10 OutlineLecture 10 Outline

Isolated saturated intersections 

Definitions: Saturation flow rate, effective green, and lost time 

Notation for an intersection approach variable 

Two assumptions for delay models 

Average delay per vehicle: deterministic term Wq,A

Average delay per vehicle: stochastic term Wq,B

Webster optimal green time settings: two approaches intersection and 
numerical example 

Webster cycle time optimization procedure 

Mid-day and evening-peak examples 

Lecture summary 
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Isolated Saturated IntersectionsIsolated Saturated Intersections
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Saturation regime 
for 1

An implication of saturation regime: need to efficiently allocate green 
times (gN, gS) and (gE, gW)

Saturation regime 
for 2
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Saturation Flow, Effective Green, and Lost TimeSaturation Flow, Effective Green, and Lost Time

Green (k) Amber (a) RedRed 

Effective green time (g) Lost time (l2)Lost time (l1)
Time 

Rate of discharge 
of queue in 

fully-saturated 
green periods 

• Total lost time l = l1 + l2 (typically 2 sec) 

• Green (k) + Amber (a) = Effective green time (g) + Total lost time (l) l = k + a - g

• Effective green time (g) Saturation flow (s) = Total vehicles discharged during (k + a)

Saturation flow 

s
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Notations for An Intersection ApproachNotations for An Intersection Approach
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Two Assumptions for Delay ModelsTwo Assumptions for Delay Models

Assumption (A): 

• The interarrival times are constant (view arrivals as evenly spaced 
at rate q)

• Service time is constant during effective green and zero in the rest 
of the cycle 

• Average waiting per vehicle is denoted by 

Assumption (B): 

• The interarrival times are exponentially distributed with rate q

• Service time is constant with service rate s

• Average waiting per vehicle is denoted by 

Webster formula for total waiting time per vehicle: 

AqW ,

BqW ,

simulationbyobtainedfactorcorrectionWWd BqAq ,, 
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Average Delay per Vehicle: TermAverage Delay per Vehicle: Term WWqq,A,A
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Total waiting during c per approach: 

Total arrivals during cycle c: qc
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Average Delay per Vehicle: TermAverage Delay per Vehicle: Term WWqq,B,B

Interarrival times are exponentially distributed with rate q, and 
service times are deterministic with rate s
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WebsterWebster’’s Average Delay Per Vehicle Models Average Delay Per Vehicle Model

Average delay per vehicle: termcorrectionWWd BqAq ,, 

)52(
3
1

2

22

65.0 
)1(2)1(2 

)1(
x

q

c

xq 

x

x

c
d

dominates for very small values of x

dominates for large values of x (x 1)

Small value of x is not an important case from an optimization 
standpoint 

Optimal green time setting problem: Find E, W, N, and S such that 
the total delay is minimum 

AqW ,

BqW ,
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Observed DelayObserved Delay vsvs.. WebsterWebster’’s Models Model

Semi-empirical curve 
to fit results 

Terms Wq,A + Wq,B 

Term Wq,A 

Degree of saturation, x

Relative delay per vehicle = 
Average delay per vehicle / Cycle time 
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““Optimal SettingsOptimal Settings””: A Two Approaches Intersection: A Two Approaches Intersection
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Numerical Example 1Numerical Example 1
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Cycle Time OptimizationCycle Time Optimization
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Numerical Example 2: MidNumerical Example 2: Mid--DayDay
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Numerical Example 2(cont.): EveningNumerical Example 2(cont.): Evening--PeakPeak
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Lecture 10 SummaryLecture 10 Summary

Isolated saturated intersections 

Definitions: Saturation flow rate, Effective green, and Lost time 

Notations for an intersection approach variable 

Two assumptions for delay models 

Average delay per vehicle: deterministic term Wq,A

Average delay per vehicle: stochastic term Wq,B

Webster optimal green time settings: Two approaches intersection 
and numerical example 

Webster cycle time optimization procedure 

Mid-day and evening-peak examples 
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