PUBLIC TRANSPORT MODAL CAPACITIES AND COSTS

Outline

- 1. Modal Characteristics (cont'd) -- Simple Capacity Analysis
- 2. World-Wide Status of Urban Rail Systems
- 3. Capital Costs
- 4. Operating Costs

Simple Capacity Analysis

Question: Given a pie-shaped sector corridor serving a CBD served by a single transit line, what will be the peak passenger flow at the CBD?

Simple Capacity Analysis

Give	n:	
P_{c}	=	population density at CBD
dP	=	rate of decrease of population density with distance from CBD
θ	=	angle served by corridor
r	=	distance out from CBD
L	=	corridor length
t	=	number of one-way trips per person per day
С	=	share of trips inbound to CB
т	=	transit market share for CBD-bound trips
p Then	= 1:	share of CBD-bound transit trips in peak hour
	• • •	$\int r \theta (P - dPr) dr$

Population in corridor=

$$\int_{0}^{L} r\theta (P_{c} - d\Pr) dr$$

$$L^2 \theta \left(\frac{P_c}{2} - \frac{dPL}{3} \right)$$

1.258J/11.541J/ESD.226J Spring 2010, Lecture 3

=

Simple Capacity Analysis

Peak Passenger Flow =
$$L^2 \theta \left(\frac{P_c}{2} - \frac{dPL}{3} \right) tcmp$$

Maximum access distance to transit line = $L\theta/2$

Examples:

P _c	dP	θ	L	t	С	т	р	Req. Capacity	Max Access
10,000	800	2 ∏ /9	10	2.5	0.2	0.5	0.25	10,000	3.5
20,000	1,600	2 ∏ /9	10	1.5	0.3	0.8	0.25	30,000	3.5

Theoretical Capacities

Rail: 10 car trains, 200 pass/car, 2-minute headway

Bus: 70 pass/bus, 30-second headways

BRT: 200 pass/bus, 20 second headways

Light rail: 150 pass/car, 2-car trains, 1-minute headway ≡ 60,000 pass/hr

≡ 8,400 pass/hr

≡ 36,000 pass/hr

= 18,000 pass/hr

MBTA Rail Lines Peak Hour Volumes

Red Line:	Braintree branch	6,100
	Ashmont branch	3,700
	Cambridge	8,200
Orange Line:	North	8,100
	Southwest	7,400
Blue Line:		6,000
Green Line:	В	2,000
	С	1,900
	D	2,200
	E	900
	Central Subway	6,500

Worldwide Urban Rail Systems

A. Full Heavy Rail Standards

Started system operation	N. America	Europe	Rest of World	Total Starts	Cumulative Starts
Pre 1901	2	4		6	6
1901-1920	2	3	1	6	12
1921-1940		2	2	4	16
1941-1960	2	6	1	9	25
1961-1980	5	16	10	31	56
1981-2000	4	9	18	31	87
Post-2000 or	1	3	5	9	96
In Construction	1	1	3	5	101
TOTALS	17	44	40	101	

B. Light Rail Systems: total in operation

	N. America	Europe	Rest of World	Total
Total Systems	29	60	16	105

Capital Costs

In US:

• \$14.5 billion in capital costs in 2007

By type:

- 27% for vehicles
- 61% for infrastructure and facilities
- 12% other

By mode:

- 23% for bus projects
- 32% for heavy rail projects
- 17% for commuter rail projects
- 21% for light rail projects
- 7% other

Capital Costs by Type and by Mode

	Bus	Heavy Rail	Commuter Rail	Light Rail	Other
Vehicles	52%	27%	18%	11%	58%
Infrastructure, facilities, and other	48%	83%	82%	89%	42%
Total (\$ bill)	3.3	4.7	2.4	3.0	1.1

- Infrastructure, facilities and systems capital costs dominate for rail modes
- Vehicular capital costs represent about half of all capital costs for non-rail modes

Infrastructure Costs

Key factors:

- type of construction
 - -- at grade (least expensive)
 - -- elevated
 - -- subway: shallow tunnel, deep tunnel (most expensive)
- land acquisition and clearance (relocation)
- number, size, complexity, and length of stations
- systems complexity

Typical Capital Costs

Heavy Rail:

	System cost (includes stations and vehicles) (\$ billion)*	Cost/km (\$ million)
Tren Urbano: new system (2002) Phase I: 17 km, 16 stations 50% at grade, 40% elevated, 10% subway	2.0	118
MBTA Red Line Alewife Station Extension (1984) 5 km, 4 stations: 100% subway	0.6	120
LA MTA: new system (late 1980s) 7 km: subway	1.2	180
WMATA: new system (late 1970s-early 1990s) Multiple phases 100 km, 70 stations (partial system) Mix of subway, elevated, and at grade	6.4	60

* Costs are in current \$, not constant \$.

Kain (mid-1990s) estimate of average heavy rail capital costs: \$80 million/km

Typical Capital Costs (cont'd)

<u>LRT</u>:

	System cost (includes stations and vehicles) (\$ million)*	Cost/km (\$ million)
LA MTA (late 1980s): 30 km, at grade	690	23
Buffalo (late 1980s): 10 km, subway	529	53
Santa Clara (late 1980s): 30 km, at grade	498	16
Portland: 22 km, at grade	214	10

* Costs are in current \$, not constant \$.

Kain (mid-1990s) estimate of average LRT capital costs: \$25 million/km

Typical Capital Costs (cont'd)

Busways:

	System cost (includes stations) (\$ million)	Cost/km (\$ million)
MBTA South Boston Transitway (2002): 2 km, bus tunnel	606*	303
Bogotá Transmilenio (2001): 36 km, at grade	200	5
Seattle (mid 1980s): 2 km, bus tunnel	319	160
Pittsburgh (mid 1980s): 10 km, at grade	113	11
Houston (early 1980s): 35 km, at grade	290	8

* also includes vehicle cost

Vehicle Capital Costs

	Generic Cost	MBTA most recent order
Rail Car (Heavy Rail or LRV)	\$1.5-2.5 mill	Breda \$1.985 mill 100 vehicles (LRT)
Standard 40' bus - CNG	\$0.3-0.35 mill	NABI \$0.31, \$0.32 mill 300 vehicles
Standard 40' trolley	\$1 mill	Neoplan \$0.943 mill 28 vehicles
Articulated 60' bus - CNG	\$0.5-0.7 mill	Neoplan \$0.614 mill 44 vehicles
Articulated dual-mode 60' bus		Neoplan \$1.6 mill 32 vehicles

Typical Capital Costs on Per Passenger Mile Basis

Vehicle cost per passenger mile: \$0.05-0.10 for all modes

Infrastructure cost per passenger mile: \$0.01-1.00

Operating Costs

In US:

• \$33.9 billion in operating costs in 2007

By type:

- 46% for vehicle operations
- 18% for vehicle maintenance
- 9% for non-vehicle maintenance
- 14% for administration
- 13% for purchased transportation

By mode:

- 51% for buses
- 17% for heavy rail
- 12% for commuter rail
- 4% for light rail
- 13% for paratransit
- 3% for other modes

Productivity

• # of Employees per Revenue Vehicle (U.S., Industry-wide)

Paratransit	Bus	Commuter Rail	Heavy Rail	Light Rail	Total
1.4	2.9	4.5	4.9	5.5	2.3

 Bus/rail comparison for NYCT (from Pushkarev and Zupan in 1970s) (employees/vehicle):

	Veh. Ops.	Veh. Maint.	Manage & Control	Fare Coll.	Way Maint.	Total
Bus	2.2	0.8	0.5			3.5
Rail	1.0	0.8	0.8	0.6	1.2	4.4

• Metro productivity is 3-4 times average bus productivity measured in pass. miles/RVH

1.258J / 11.541J / ESD.226J Public Transportation Systems Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.