PUBLIC TRANSPORT MODAL CAPACITIES AND COSTS

Outline

1. Modal Characteristics (cont'd) -- Simple Capacity Analysis
2. World-Wide Status of Urban Rail Systems
3. Capital Costs
4. Operating Costs

Simple Capacity Analysis

Question: Given a pie-shaped sector corridor serving a CBD served by a single transit line, what will be the peak passenger flow at the CBD?

Simple Capacity Analysis

Given:

Simple Capacity Analysis

Peak Passenger Flow $=L^{2} \theta\left(\frac{P_{c}}{2}-\frac{d P L}{3}\right) t c m p$
Maximum access distance to transit line $=L \theta / 2$
Examples:

P_{c}	$d P$	θ	L	t	c	m	p	Req. Capacity	Max Access
10,000	800	$2 \Pi / 9$	10	2.5	0.2	0.5	0.25	10,000	3.5
20,000	1,600	$2 \Pi / 9$	10	1.5	0.3	0.8	0.25	30,000	3.5

Theoretical Capacities

Rail： 10 car trains， 200 pass／car，$\equiv \mathbf{6 0 , 0 0 0}$ pass／hr 2－minute headway

Bus： 70 pass／bus，
三 8，400 pass／hr 30－second headways

BRT： 200 pass／bus，
三 36，000 pass／hr 20 second headways

Light rail： 150 pass／car，
三 18，000 pass／hr 2－car trains，1－minute headway

MBTA Rail Lines Peak Hour Volumes

Red Line:	Braintree branch	$\mathbf{6 , 1 0 0}$
	Ashmont branch	$\mathbf{3 , 7 0 0}$
	Cambridge	$\mathbf{8 , 2 0 0}$
Orange Line:	North	$\mathbf{8 , 1 0 0}$
	Southwest	$\mathbf{7 , 4 0 0}$
Blue Line:		$\mathbf{6 , 0 0 0}$
Green Line:	B	2,000
	C	1,900
	D	2,200
	E	900
	Central Subway	6,500

Worldwide Urban Rail Systems

A. Full Heavy Rail Standards

Started system operation	N. America	Europe	Rest of World	Total Starts	Cumulative Starts
Pre 1901	2	4	--	6	6
$1901-1920$	2	3	1	6	12
$1921-1940$	--	2	2	4	16
$1941-1960$	2	6	1	9	25
$1961-1980$	5	16	10	31	56
$1981-2000$	4	9	18	31	87
Post-2000 or	1	3	5	9	96
In Construction	1	1	3	5	101
TOTALS	17	44	40	101	

B. Light Rail Systems: total in operation

	N. America	Europe	Rest of World	Total
Total Systems	29	60	16	105

Capital Costs

In US:

- $\quad \$ 14.5$ billion in capital costs in 2007

By type:

- 27\% for vehicles
- 61\% for infrastructure and facilities
- 12\% other

By mode:

- 23\% for bus projects
- 32\% for heavy rail projects
- 17% for commuter rail projects
- 21% for light rail projects
- 7\% other

Capital Costs by Type and by Mode

	Bus	Heavy Rail	Commuter Rail	Light Rail	Other
Vehicles	52%	27%	18%	11%	58%
Infrastructure, facilities, and other	48%	83%	82%	89%	42%
Total (\$ bill)	3.3	4.7	2.4	3.0	1.1

- Infrastructure, facilities and systems capital costs dominate for rail modes
- Vehicular capital costs represent about half of all capital costs for non-rail modes

Infrastructure Costs

Key factors:

- type of construction
-- at grade (least expensive)
-- elevated
-- subway: shallow tunnel, deep tunnel (most expensive)
- land acquisition and clearance (relocation)
- number, size, complexity, and length of stations
- systems complexity

Typical Capital Costs

Heavy Rail:

	System cost (includes stations and vehicles) (\$ billion)*	Cost/km (\$ million)
Tren Urbano: new system (2002) Phase I: 17 km, 16 stations 50% at grade, 40\% elevated, 10\% subway	2.0	118
MBTA Red Line Alewife Station Extension (1984) $5 \mathrm{~km}, 4$ stations: 100% subway	0.6	120
LA MTA: new system (late 1980s) 7 km: subway	1.2	180
WMATA: new system (late 1970s-early 1990s) Multiple phases 100 km, 70 stations (partial system) Mix of subway, elevated, and at grade	6.4	60

* Costs are in current \$, not constant \$.

Kain (mid-1990s) estimate of average heavy rail capital costs: $\$ 80$ million/km

Typical Capital Costs (cont'd)

LRT:

	System cost (includes stations and vehicles) (\$ million)*	Cost/km (\$ million)
LA MTA (late 1980s): 30 km , at grade	690	23
Buffalo (late 1980s): 10 km, subway	529	53
Santa Clara (late 1980s): 30 km , at grade	498	16
Portland: 22 km, at grade	214	10

* Costs are in current \$, not constant \$.

Kain (mid-1990s) estimate of average LRT capital costs: $\$ 25$ million/km

Typical Capital Costs (cont'd)

Busways:

	System cost (includes stations) (\$ million)	Cost/km (\$ million)
MBTA South Boston Transitway (2002): 2 km, bus tunnel	606^{*}	303
Bogotá Transmilenio (2001): 36 km, at grade	200	5
Seattle (mid 1980s): 2 km, bus tunnel	319	160
Pittsburgh (mid 1980s): 10 km, at grade	113	11
Houston (early 1980s): 35 km, at grade	290	8

* also includes vehicle cost

Vehicle Capital Costs

	Generic Cost	MBTA most recent order
Rail Car (Heavy Rail or LRV)	\$1.5-2.5 mill	Breda \$1.985 mill 100 vehicles (LRT)
Standard 40' bus - CNG	\$0.3-0.35 mill	NABI \$0.31, \$0.32 mill 300 vehicles
Standard 40' trolley	\$1 mill	Neoplan \$0.943 mill 28 vehicles
Articulated 60' bus - CNG	\$0.5-0.7 mill	Neoplan \$0.614 mill 44 vehicles
Articulated dual-mode 60' bus	---	Neoplan \$1.6 mill 32 vehicles

Typical Capital Costs on Per Passenger Mile Basis

Vehicle cost per passenger mile: $\mathbf{\$ 0 . 0 5 - 0 . 1 0}$ for all modes Infrastructure cost per passenger mile: \$0.01-1.00

Operating Costs

In US:

- $\quad \$ 33.9$ billion in operating costs in 2007

By type:

- 46% for vehicle operations
- 18% for vehicle maintenance
- 9% for non-vehicle maintenance
- 14\% for administration
- 13\% for purchased transportation

By mode:

- 51\% for buses
- 17% for heavy rail
- 12% for commuter rail
- 4\% for light rail
- 13% for paratransit
- 3\% for other modes

Productivity

- \# of Employees per Revenue Vehicle (U.S., Industry-wide)

Paratransit	Bus	Commuter Rail	Heavy Rail	Light Rail	Total
1.4	2.9	4.5	4.9	5.5	2.3

- Bus/rail comparison for NYCT
(from Pushkarev and Zupan in 1970s) (employees/vehicle):

	Veh. Ops.	Veh. Maint.	 Control	Fare Coll.	Way Maint.	Total
Bus	2.2	0.8	0.5	--	--	3.5
Rail	1.0	0.8	0.8	0.6	1.2	4.4

- Metro productivity is 3-4 times average bus productivity measured in pass. miles/RVH

1.258J / 11.541J / ESD.226J Public Transportation Systems

Spring 2010

For information about citing these materials or our Terms of Use, visit: |http://ocw.mit.edu/terms.

