Performance of a Single Route

Outline

1. Wait time models
2. Service variation along route
3. Running time models

Wait Time Models

Simple deterministic model:
$E(w)=E(h) / 2$
where
$E(w)=$ expected waiting time
$E(h)=$ expected headway
Model assumptions:

- passenger arrival times are independent of vehicle departure times
- vehicles depart deterministically at equal intervals
- every passenger can board the first vehicle to arrive

Passenger Arrival Process

- Individual, group, and bulk passenger arrivals
- Passengers can be classified in terms of arrival process:
- random arrivals
- time arrival to minimize $E(w)$
- arrive with the vehicle, i.e. have $w=0$

Passenger Arrival Process (cont'd)

- For long headway service have "schedule delay" as well as wait time

Vehicle Departure Process

Vehicle departures typically not regular and deterministic

Wait Time Model refinement:

If: $n(h)=$ \# of passengers arriving in a headway h
$\bar{w}(h) \quad=\quad$ mean waiting time for passengers arriving in headway h
$g(h)=$ probability density function of headway

Then:
$E(w)=$ Expected Total Passenger Waiting Time per vehicle departure Expected Passengers per vehicle departure

$$
\frac{\int_{0}^{\infty} n(h) \bar{w}(h) g(h) d h}{\int_{0}^{\infty} n(h) g(h) d h}
$$

Vehicle Departure Process

Now if: $\quad n(h)=\lambda . h$ where λ is passenger arrival rate

$$
\bar{w}(h)=\frac{h}{2}
$$

Then: $\quad E(w)=\frac{E\left(h^{2}\right)}{2 E(h)}=\frac{E(h)}{2}\left[1+\frac{\operatorname{var}(h)}{(E(h))^{2}}\right]=\frac{E(h)}{2}\left[1+(\operatorname{cov}(h))^{2}\right]$

Vehicle Departure Process Examples

A. If $\operatorname{var}(h)=0$:

$$
E(w)=E(h) / 2
$$

B. If vehicle departures are as in a Poisson process:

$$
\operatorname{var}(h)=(E(h))^{2} \text { and } E(w)=E(h)
$$

C. The headway sequence is $5,15,5,15, \ldots$ then:

$$
\begin{aligned}
& E(h)=10 \\
& E(w)=2.5 * 0.25+7.5 * 0.75=6.25 \mathrm{mins}
\end{aligned}
$$

Passenger Loads Approach Vehicle Capacity

- Not all passengers can board the first vehicle to depart:

- General queuing relationship

Service Variation Along Route

- Service may vary along route even without capacity becoming binding:
- the headway distribution can vary along the route, affecting $E(w)$
- at the limit vehicles can be paired, or bunched
- this can also result in passenger load variation between vehicles

Service Variation Along Route (cont'd)

Service Variation Along Route (cont'd)

Factors Affecting Headway Deterioration

- Length of route
- Marginal dwell time per passenger
- Stopping probability
- Scheduled headway
- Driver behavior

Simple model:
$\boldsymbol{e}_{i}=\left(\boldsymbol{e}_{i-1}+t_{i}\right)\left(\mathbf{1}+\boldsymbol{p}_{i-1} \bullet b\right)$
where $e_{i}=$ headway deviation (actual-scheduled) at stop i
$t_{i}=$ travel time deviation (actual-scheduled) from stop $i-1$ to i
$p_{i}=$ passenger arrival rate at stop i
b = boarding time per passenger

Mathematical Model for Headway Variance*

$$
\begin{aligned}
& \operatorname{var}\left(h_{i}\right)=\operatorname{var}\left(h_{i-1}\right)+\operatorname{var}\left(\Delta t_{i-1}\right)+2 p_{i-1}\left(1-p_{i-1}\right)\left(c \cdot \bar{q}_{i-1}+\ell\right)^{2} \\
& +2 c^{2} \operatorname{var}\left(q_{i-1}\right)\left[1-\rho_{q}+p_{i-1} \rho_{q}\right]\left(1-p_{i+1}\right) \\
& +c\left(1-p_{i-1}\right)^{2} \cdot \operatorname{cov}\left(\Delta q_{i-1}, h_{i-1}\right) \\
& \text { where: } \operatorname{var}\left(h_{i}\right) \quad=\text { headway variance at stop } i \\
& \operatorname{var}\left(\Delta t_{i}\right) \quad=\text { variance of the difference in running time } \\
& \text { between successive buses between stops } i-1 \text { and } i \\
& p_{i} \quad=\text { probability bus will skip stop } i \\
& c \quad=\text { marginal dwell time per passenger served at a stop } \\
& \bar{q}_{i} \quad=\text { mean number of passengers per bus served at stop } i \\
& \ell \quad=\text { the constant term of the dwell time function } \\
& \operatorname{var}\left(q_{i}\right) \quad=\text { variance of the number of passengers served } \\
& \text { per bus at stop i } \\
& \rho_{q} \quad=\text { correlation coefficient between the passengers served } \\
& \text { by successive buses at a stop } \\
& \operatorname{cov}\left(\Delta q_{i}, h_{i}\right)=\text { covariance of the difference in number of } \\
& \text { passengers served by successive buses and the } \\
& \text { headway at stop i Courtesy Elsevier, Inc., http://www.sciencedirect.com. Used with permission. }
\end{aligned}
$$

* Adebisi, O., "A Mathematical Model for Headway Variance of Fixed Bus Routes." Transportation Research B, Vol. 20B, No. 1, pp 59-70 (1986).

Vehicle Running Time Models

Different levels of detail:

A. Very detailed, microscopic simulation:

- represents vehicle motion and interaction with other vehicles, e.g. buses operating in mixed traffic, or train interaction through control system
B. Macroscopic:
- identify factors which might affect running times
- collect data and estimate model

Vehicle Running Time Models

Running Time includes dwell time, movement time, and delay time:
dwell time is generally a function of number of passengers boarding and alighting as well as technology characteristics
movement time and delay depend on other traffic and control system attributes
Typical bus running time breakdown in mixed traffic:
50-75\% movement time
10-25\% stop dwell time
10-25\% traffic delays including traffic signals

MIT OpenCourseWare
http://ocw.mit.edu

1.258J / 11.541J / ESD.226J Public Transportation Systems

Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

