Dwell Time Models

Outline

1. Dwell Time Theory

2. Bus Dwell Time Model ${ }^{1}$
3. Light Rail Dwell Time Model ${ }^{2}$
4. Heavy Rail Dwell Time Model ${ }^{3}$

1 Milkovits, M.N., "Modeling the Factors Affecting Bus Stop Dwell Time: Use of Automatic Passenger Counting, Automatic Fare Counting, and Automatic Vehicle Location Data." Transportation Research Record: Journal of the Transportation Research Board, pp pp 125-130 (2008).

2 Wilson, N.H.M. and T. Lin, "Dwell-Time Relationships for Light Rail Systems," Transportation Research Record \#1361, 1993, pp. 296-304.

3 Puong, A., "Dwell Time Model and Analysis for the MBTA Red Line." Internal memo, MIT, March 2000.

Dwell Time Theory

- Vehicle dwell time affects:
- system performance
- service quality
- A critical element in vehicle bunching resulting in:
- high headway variability
- high passenger waiting times
- uneven passenger loads
- Dwell time impact on performance depends on:
- stop/station spacing
- mean dwell as proportion of trip time
- mean headway
- operations control procedures

EXAMPLES:

Commuter rail ---> little impact of dwell time on performance
Long, high-frequency bus route ---> major impact

Dwell Time Theory

- Dwell time depends on many factors:
- Human, modal, operating policies \& practices, mobility, weather, etc.
- For a given system we have the following possible models:

1. Single door, no congestion and interference: DOT $=a+b(D O N S)+c(D O F F S)$
2. Single door with congestion and interference: DOT $=a+b(D O N S)+c(D O F F S)+d(D O N S+D O F F S)(D T D)$

Dwell Time Theory (cont'd)

- For a given system we have the following possible models ...

3. Single car with m doors:

DT $=\max \left(\right.$ DOT $_{1} \ldots$, DOT $\left._{m}\right)$
With balanced flows:
DT $=\mathrm{a}+\mathrm{b} / \mathrm{m}($ CONS $)+\mathrm{c} / \mathrm{m}($ COFFS $)+\mathrm{d} / \mathrm{m}($ CONS + COFFS)(STD)
4. n-car train:
$\mathrm{DT}=\max \left(\mathrm{DT}_{1}, \ldots, \mathrm{DT}_{\mathrm{n}}\right)$
With balanced flows:
DT $=\mathbf{a}+\mathbf{b} / \mathrm{nm}($ TONS $)+\mathbf{c} / \mathrm{nm}($ TOFFS $)+\mathrm{d} / \mathrm{nm}$ (TONS + TOFFS)(STD)

Bus Dwell Time: Prior Work

Manually collected data

- Limited data on infrequent events
- Crowding
- Do not include latest fare media

Automatically collected data

- Does not include fare media information
- Poor fit of model

Transit Capacity and Quality of Service Manual

- Assumes a half-second penalty per passenger for crowding

Objective

- Develop a dwell time model using automatically collected data
- Dwell time factors:
- Boarding and alighting passengers
- Onboard passengers
- Fare media type
- Alighting door selection
- Bus type
- Minimize the unexplained variation in dwell time
- Evaluate impact on dwell time of:
- fare media type
- bus design
- enforcement of rear-only alightings

Ref: Milkovits (2008)

Data Set

- Automatically collected data from Chicago Transit Authority bus network
- Non-Timepoint, Far-Side, Known Stops
- Functioning APC counters on all doors
- Verified by non-zero counts across day
- Minimum per-passenger dwell time of .5 seconds
- Link-in AFC transactions
- Fare transactions that take place within the dwell time
- Data from entire month of November 2006
- 173,750 Records
- 2,977 Operators
- 85 Routes
- 927 Stops

Ref: Milkovits (2008)

Model Formulation

- Predict dominant door activity
- Segment data and compare by:
- Bus type
- Crowding (passengers > number of seats)
- Combine the data and test for significant differences in the estimators

Dwell Time Estimates - Front Door

			Adjusted R${ }^{2}: 0.73$
Variable	est	t-stat	Passenger Levels
intercept	-1.22	-26.49	
NABI	0.53	7.81	
FON_EX	3.68	154.17	All
	NOVA	0.38	
	NABI	-0.59	-11.32

From Milkovits, M. "Modeling the Factors Affecting Bus Stop Dwell Time: Use of Automatic Passenger Counting, Automatic Fare Counting, and Automatic Vehicle Location Data." In Transportation Research Record: Journal of the Transportation Research Board, No. 2072, Tables 3 and 4, p. 128. Copyright, National Academy

Dwell Time Estimates - Rear Door

			Adjusted R${ }^{2}: 0.37$	
Variable	DUMMY	est	t-stat	Passenger Levels
Intercept	1.42	22.49		
	NABI	2.64	21.26	
ROFF	1.69	40.86	All	
	NOVA	0.42	7.47	
	NABI	-0.42	-5.37	
ST2_PASS	0.005	5.64	Crowded	
	NOVA	0.004	2.11	
	NABI	-0.003	-3.36	

From Milkovits, M. "Modeling the Factors Affecting Bus Stop Dwell Time: Use of Automatic Passenger Counting, Automatic Fare Counting, and Automatic Vehicle Location Data." In Transportation Research Record: Journal of the Transportation Research Board No. 2072, Tables 3 and 4, p. 128. Copyright, National Academy of Sciences, Washington, D.C., 2008. Reproduced with permission of the Transportation Research Board.

Bus Dwell Time Model: Key Findings

- Smart media loses benefit in crowded conditions
- Drops from 2 second advantage in non-crowded conditions
- Crowding impact increases exponentially
- Bus attributes impact dwell time
- Location of magnetic stripe reader (half second difference)
- Double-wide doors
- Front door alightings may affect dwell time, while rear door alightings will happen in parallel

MBTA Green Line Analysis

- Branching network of 28 miles ($\mathbf{4 5} \mathbf{~ k m}$) and $\mathbf{7 0}$ stations
- 52-seat ALRVs operate in 1-, 2-, and 3-car trains
- high floor, low platform configuration
- 3 doors per car on each side
- single side boarding/alighting
- Trunk service in central subway:
- 10 or 14 stations on round-trip
- 1- to 2-minute headways
- peak flows $\approx 10,000$ passengers/hour

Models with Crowding Term

A. One-car trains:
$D T=12.50+0.55 * T O N S+0.23 * T O F F S+0.0078 * S U M A S L S$
(8.94) (3.76)
(2.03)
(6.70)

SUMASLS = TOFFS*AS + TONS*LS

$$
\left(\mathrm{R}^{2}=0.62\right)
$$

B. Two-car trains:

$$
\begin{array}{cc}
\mathrm{DT}=\underset{(7.43)}{13.93}+\underset{(2.92)}{0.27 * T O N S}+\underset{(3.79)}{0.36 * T O F F S}+\underset{(2.03)}{0.0008 * S U M A S L S} \\
& \\
& \left(R^{2}=0.70\right)
\end{array}
$$

Ref: Wilson and Lin (1993)

Predicted Dwell Times

ONS	LPL	1-Car DT	2-Car DT
0	any \#	12.5	13.9
10	<53	20.3	20.2
10	150	35.6	21.0
20	<53	28.1	26.5
20	150	58.7	28.1
30	<53	35.9	32.8
30	150	81.8	35.1

Ref: Wilson and Lin (1993)

Findings

- Dwell times for ALRVs are quite sensitive to:
- Passenger flows
- Passenger loads
- The crowding effect may well be non-linear.
- Dwell times for multi-car trains are different form those for one-car trains.
- The dwell time functions suggest high sensitivity of performance to perturbations
- Effective real-time operations control essential
- Running mixed train lengths dangerous
- Simulation models of high frequency, high ridership light rail lines need to include realistic dwell time functions.

Ref: Wilson and Lin (1993)

Heavy Rail Marginal Boarding Time

Heavy Rail Dwell Time Function

$$
\begin{array}{rccc}
D T= & 12.22 & +2.27 \cdot B_{d} & +1.82 \cdot A_{d} \tag{9}\\
& (12.82) & (7.11) & (9.07)
\end{array}
$$

where
$A_{d}=$ alighting passengers per door,
$B_{d}=$ boarding passengers per door, and
$T S_{d}=$ through standees per door,
i.e., total through standees divided by the number of doors

1.258J / 11.541J / ESD.226J Public Transportation Systems

Spring 2010

For information about citing these materials or our Terms of Use, visit: |http://ocw.mit.edu/terms.

