Dwell Time Models

Outline

- **1. Dwell Time Theory**
- 2. Bus Dwell Time Model¹
- 3. Light Rail Dwell Time Model²
- 4. Heavy Rail Dwell Time Model³
- 1 Milkovits, M.N., "Modeling the Factors Affecting Bus Stop Dwell Time: Use of Automatic Passenger Counting, Automatic Fare Counting, and Automatic Vehicle Location Data." Transportation Research Record: Journal of the Transportation Research Board, pp pp 125-130 (2008).
- 2 Wilson, N.H.M. and T. Lin, "Dwell-Time Relationships for Light Rail Systems," *Transportation Research Record #1361*, 1993, pp. 296-304.
- 3 Puong, A., "Dwell Time Model and Analysis for the MBTA Red Line." Internal memo, MIT, March 2000.

Nigel Wilson

1.258J/11.541J/ESD.226J Spring 2010, Lecture 15

Dwell Time Theory

- Vehicle dwell time affects:
 - system performance
 - service quality
- A critical element in vehicle bunching resulting in:
 - high headway variability
 - high passenger waiting times
 - uneven passenger loads
- Dwell time impact on performance depends on:
 - stop/station spacing
 - mean dwell as proportion of trip time
 - mean headway
 - operations control procedures

EXAMPLES:

Commuter rail ---> little impact of dwell time on performance

Long, high-frequency bus route ---> major impact

Dwell Time Theory

- Dwell time depends on many factors:
 - Human, modal, operating policies & practices, mobility, weather, etc.
- For a given system we have the following possible models:
 - Single door, no congestion and interference:
 DOT = a + b(DONS) + c(DOFFS)
 - 2. Single door with congestion and interference:DOT = a + b(DONS) + c(DOFFS) + d(DONS+DOFFS)(DTD)

Dwell Time Theory (cont'd)

- For a given system we have the following possible models ...
 - 3. Single car with m doors:

 $DT = max(DOT_1 ..., DOT_m)$

With balanced flows:

DT = a + b/m(CONS) + c/m(COFFS) + d/m(CONS+COFFS)(STD)

4. *n*-car train:

 $DT = max(DT_1, ..., DT_n)$

With balanced flows:

DT = a + b/nm(TONS) + c/nm(TOFFS) + d/nm(TONS+TOFFS)(STD)

Bus Dwell Time: Prior Work

Manually collected data

- Limited data on infrequent events
 - Crowding
- Do not include latest fare media

Automatically collected data

- Does not include fare media information
- Poor fit of model

Transit Capacity and Quality of Service Manual

Assumes a half-second penalty per passenger for crowding

Objective

- Develop a dwell time model using automatically collected data
- Dwell time factors:
 - Boarding and alighting passengers
 - Onboard passengers
 - Fare media type
 - Alighting door selection
 - Bus type
- Minimize the unexplained variation in dwell time
- Evaluate impact on dwell time of:
 - fare media type
 - bus design
 - enforcement of rear-only alightings

Data Set

- Automatically collected data from Chicago Transit Authority bus network
- Non-Timepoint, Far-Side, Known Stops
- Functioning APC counters on all doors
 - Verified by non-zero counts across day
 - Minimum per-passenger dwell time of .5 seconds
- Link-in AFC transactions
 - Fare transactions that take place within the dwell time
- Data from entire month of November 2006
 - 173,750 Records
 - 2,977 Operators
 - 85 Routes
 - 927 Stops

Model Formulation

- Predict dominant door activity
- Segment data and compare by:
 - Bus type
 - Crowding (passengers > number of seats)
- Combine the data and test for significant differences in the estimators

Dwell Time Estimates – Front Door

				Adjusted R ² : 0.73
Variable	DUMMY	est	t-stat	Passenger Levels
intercept		-1.22	-26.49	
NABI		0.53	7.81	
FON_EX		3.68	154.17	
	NOVA	0.38	10.51	
	NABI	-0.59	-11.32	
FOFF3UP		1.52	26.22	
CARDS		2.62	10.15	
TICKET		4.88	39.55	
	NFLYER	-0.58	-3.62	Open
FOFF12		2.83	104.59	
F_SENSOR		4.60	21.55	
AFC_TRANS		4.35	15.54	
FOFF12		3.52	22.54	
	NFLYER	-0.74	-3.71	Crowded
ST2_PASS		0.0011	5.56	[
	NFLYER	0.0017	3.53	

From Milkovits, M. "Modeling the Factors Affecting Bus Stop Dwell Time: Use of Automatic Passenger Counting, Automatic Fare Counting, and Automatic Vehicle Location Data." In *Transportation Research Record: Journal of the Transportation Research Board*, No. 2072, Tables 3 and 4, p. 128. Copyright, National Academy of Sciences, Washington, D.C., 2008. Reproduced with permission of the Transportation Research Board.

Ref: Milkovits (2008) Nigel Wilson

1.258J/11.541J/ESD.226J Spring 2010, Lecture 15

Dwell Time Estimates – Rear Door

		•		Adjusted R ² : 0.37
Variable	DUMMY	est	t-stat	Passenger Levels
Intercept		1.42	22.49	
	NABI	2.64	21.26	
ROFF		1.69	40.86	All
	NOVA	0.42	7.47	
	NABI	-0.42	-5.37	
ST2_PASS		0.005	5.64	
	NOVA	0.004	2.11	Crowded
	NABI	-0.003	-3.36	

From Milkovits, M. "Modeling the Factors Affecting Bus Stop Dwell Time: Use of Automatic Passenger Counting, Automatic Fare Counting, and Automatic Vehicle Location Data." In *Transportation Research Record: Journal of the Transportation Research Board* No. 2072, Tables 3 and 4, p. 128. Copyright, National Academy of Sciences, Washington, D.C., 2008. Reproduced with permission of the Transportation Research Board.

Bus Dwell Time Model: Key Findings

- Smart media loses benefit in crowded conditions
 - Drops from 2 second advantage in non-crowded conditions
- Crowding impact increases exponentially
- Bus attributes impact dwell time
 - Location of magnetic stripe reader (half second difference)
 - Double-wide doors
- Front door alightings may affect dwell time, while rear door alightings will happen in parallel

MBTA Green Line Analysis

- Branching network of 28 miles (45 km) and 70 stations
- 52-seat ALRVs operate in 1-, 2-, and 3-car trains
 - high floor, low platform configuration
 - 3 doors per car on each side
 - single side boarding/alighting
- Trunk service in central subway:
 - 10 or 14 stations on round-trip
 - 1- to 2-minute headways
 - peak flows ≈10,000 passengers/hour

Ref: Wilson and Lin (1993)

Models with Crowding Term

A. One-car trains:

DT = 12.50 + 0.55*TONS + 0.23*TOFFS + 0.0078*SUMASLS (8.94) (3.76) (2.03) (6.70)

SUMASLS = TOFFS*AS + TONS*LS $(R^2 = 0.62)$

B. Two-car trains:

DT = 13.93 + 0.27*TONS + 0.36*TOFFS + 0.0008*SUMASLS(7.43) (2.92) (3.79) (2.03) (R² = 0.70)

Ref: Wilson and Lin (1993)

Predicted Dwell Times

ONS	LPL	1-Car DT	2-Car DT
0	any #	12.5	13.9
10	< 53	20.3	20.2
10	150	35.6	21.0
20	< 53	28.1	26.5
20	150	58.7	28.1
30	< 53	35.9	32.8
30	150	81.8	35.1

Ref: Wilson and Lin (1993)

Nigel Wilson

Findings

- Dwell times for ALRVs are quite sensitive to:
 - Passenger flows
 - Passenger loads
- The crowding effect may well be non-linear.
- Dwell times for multi-car trains are different form those for one-car trains.
- The dwell time functions suggest high sensitivity of performance to perturbations
- Effective real-time operations control essential
- Running mixed train lengths dangerous
- Simulation models of high frequency, high ridership light rail lines need to include realistic dwell time functions.

Ref: Wilson and Lin (1993)

Heavy Rail Marginal Boarding Time

Ref: Puong (2000)

Courtesy of Andre Puong. Used with permission.

Nigel Wilson

1.258J/11.541J/ESD.226J Spring 2010, Lecture 15

Heavy Rail Dwell Time Function

 $DT = 12.22 + 2.27 \cdot B_d + 1.82 \cdot A_d + 6.2 \ 10^{-4} \cdot TS_d^3 B_d \quad (\bar{R}^2 = 0.89) \quad (9)$ (12.82) (7.11) (9.07) (4.70)

where

- A_d = alighting passengers *per door*,
- B_d = boarding passengers *per door*, and
- TS_d = through standees per door, i.e., total through standees divided by the number of doors

Ref: Puong (2000)

Courtesy of Andre Puong. Used with permission.

1.258J / 11.541J / ESD.226J Public Transportation Systems Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.