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Lecture Notes on Fluid Dynamics

(1.63J/2.21J)
by Chiang C. Mei, MIT

1.2 Kinematics of Fluid Motion -the Eulerian picture

Consider two neighboring stations (not two fluid particles) ~x and ~x′ at the same instant t,
where δ~x = ~x′ − ~x is small. The fluid velocity at the two stations are related by

~q(~x′, t) = ~q(~x, t) + (~x′ − ~x) · ∇~q(~x, t) + O(~x′ − ~x)2 (1.2.1)

Hence
δ~q(~x, t) = ~q(~x′, t) − ~q(~x, t) = δ~x · ∇~q(~x, t) + O(δ~x)2 (1.2.2)

Let us introduce the index notation:

q1 = u, q2 = v, q3 = w; x1 = x, x2 = y, x3 = z (1.2.3)

and Einstein’s convention: Repeated indices are summed over the range from 1 to 3, and
the summation symbol is omitted but implied. For example,

3
∑

i=1

qiqi = qiqi = q2

1 + q2

2 + q3

3 = ~q · ~q

Thus we may write (1.2.2) as

δqi = δxj

∂qi

∂xj

, i = 1, 2, 3. (1.2.4)

Now
∂qi

∂xj

=
1

2

(

∂qi

∂xj

+
∂qj

∂xi

)

+
1

2

(

∂qi

∂xj

−
∂qj

∂xi

)

(1.2.5)

Define the rate-of -strain tensor by

eij =
1

2

(

∂qi

∂xj

+
∂qj

∂xi

)

(1.2.6)

and the vorticity tensor by

Ωij =
1

2

(

∂qi

∂xj

−
∂qj

∂xi

)

(1.2.7)

Note that
eij = eji, Ωij = −Ωji (1.2.8)

and (1.2.4) becomes
δqi = δxjeij + δxjΩij (1.2.9)

Let us examine the physics of these terms.
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1.2.1 Rate-of-strain tensor

In matrix form, the rate-of -strain tensor is :

{eij} =







e11 e12 e13

e21 e22 e23

e31 e32 e33







=











∂q1

∂x1

1

2

(

∂q1

∂x2

+ ∂q2

∂x1

)

1

2

(

∂q1

∂x3

+ ∂q3

∂x1

)

1

2

(

∂q2

∂x1

+ ∂q1

∂x2

)

∂q2

∂x2

1

2

(

∂q2

∂x3

+ ∂q3

∂x2

)

1

2

(

∂q3

∂x1

+ ∂q1

∂x3

)

1

2

(

∂q3

∂x2

+ ∂q2

∂x3

)

∂q3

∂x3











(1.2.10)

=











∂u
∂x

1

2

(

∂u
∂y

+ ∂v
∂x

)

1

2

(

∂u
∂z

+ ∂w
∂x

)

1

2

(

∂v
∂x

+ ∂u
∂y

)

∂v
∂y

1

2

(

∂v
∂z

+ ∂w
∂y

)

1

2

(

∂w
∂x

+ ∂u
∂z

)

1

2

(

∂w
∂y

+ ∂v
∂z

)

∂w
∂z











First, the diagonal terms. It is easy to see that e11 = ∂u/∂x is the rate of stretching per
unit length in the direction of x, e22 = ∂v/∂y is the rate of stretching per unit length in the
direction of y, and e33 = ∂w/∂z is the rate of stretching per unit length in the direction of
z. They are the normal components of the rate of strain tensor.

Note that

e11 + e22 + e33 = ekk =
∂u

∂x
+

∂v

∂y
+

∂w

∂z
= ∇ · ~q (1.2.11)

is the rate of volume dilatation due to fluid motion. For a proof, let us consider a cube with
sides (x, x + ∆x), (y, y + ∆y) and (z, z + ∆z). After δt, the side along x will lengthen from

∆x to ∆x + ∆x∂u
∂x

δt = ∆x
(

1 + ∂u
∂x

δt
)

. Similarly, the side along y will lengthen from ∆y to

∆y
(

1 + ∂v
∂y

δt
)

, and the side along z lengthens from ∆z to ∆z
(

1 + ∂w
∂z

δt
)

. Consequently the

volume V (t) = ∆x∆y∆z will change to

V (t + δt) = ∆x

(

1 +
∂u

∂x
δt

)

∆y

(

1 +
∂v

∂y
δt

)

∆z

(

1 +
∂w

∂z
δt

)

= V (t)

[

1 +

(

∂u

∂x
+

∂v

∂y
+

∂w

∂z

)

δt + O(δt)2

]

Hence, the rate of volume dilatation is

lim
δt=0

1

V

V (t + δt) − V (t)

δt
=

1

V

dV

dt
=

(

∂u

∂x
+

∂v

∂y
+

∂w

∂z

)

= ∇ · ~q (1.2.12)

Next, the off-diagonal terms. Referring to Figure 1.2.1, consider a plane flow in which ∂u
∂y

and ∂v
∂x

do not vanish. In the time interval δt the side ∆x rotates counterclockwise for an angle
δθ1 = ∆vδt

∆x
= ∂v

∂x
δt. The side ∆y rotates counterclockwise for an angle δθ2 = −∆uδt

∆y
= −∂u

∂y
∆t.

The total rate of angular deformation is

δθ1

δt
−

δθ2

δt
=

∂v

∂x
+

∂u

∂y
(1.2.13)
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Figure 1.2.1: Rate of strain tensor components

Thus e12 = exy is a rate of angular deformation, called the rate of shear strain. Other
components e13 and e23 can be interpreted similarly.

1.2.2 Vorticity tensor

The matrix form of Ωij is

{Ωij} =







Ω11 Ω12 Ω13

Ω21 Ω22 Ω23

Ω31 Ω32 Ω33







=











0 1

2

(

∂q1

∂x2

− ∂q2

∂x1

)

1

2

(

∂q1

∂x3

− ∂q3

∂x1

)

1

2

(

∂q2

∂x1

− ∂q1

∂x2

)

0 1

2

(

∂q2

∂x3

− ∂q3

∂x2

)

1

2

(

∂q3

∂x1

− ∂q1

∂x3

)

1

2

(

∂q3

∂x2

− ∂q2

∂x3

)

0











(1.2.14)

=











0 1

2
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∂u
∂y

− ∂v
∂x

)

1

2

(

∂u
∂z

− ∂w
∂x

)

1

2

(

∂v
∂x

− ∂u
∂y

)

0 1

2

(

∂v
∂z

− ∂w
∂y
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1

2
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∂w
∂x

− ∂u
∂z
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2
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∂w
∂y

− ∂v
∂z

)
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Because of the anti-symmetry, there are only three independent components, which can
also be used to define the vorticity vector ~ζ:

~ζ = ∇× ~q =

∣

∣

∣

∣

∣

∣

∣

~i ~j ~k
∂
∂x

∂
∂y

∂
∂z

u v w

∣

∣

∣

∣

∣

∣

∣

= ~i

(

∂w

∂y
−

∂v

∂z

)

+~j

(

∂u

∂z
−

∂w

∂x

)

+ ~k

(

∂v

∂x
−

∂u

∂y

)

(1.2.15)

Hence

{Ωij} =
1

2







0 −ζ3 ζ2

ζ3 0 −ζ1

−ζ2 ζ1 0





 (1.2.16)
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Figure 1.2.2: Circulation along a closed circle

What is the physical meaning of ~ζ ? Consider a plane circular disc A bounded by the
circle C of radius a, see Figure 1.2.2. By Stokes’ theorem

∫∫

A
(∇× ~q) · ~n dA =

∮

C
~q · d~r

Now let a → 0, then,

(∇× ~q)n

∫∫

A
dA =

∮

C
~q · d~r

or,
1

2
ζn =

1

2
(∇× ~q)n =

1

a

[

1

2πa

∮

C
~q · d~r

]

The quantity
[

1

2πa

∮

C
~q · d~r

]

is the average tangential velocity along the circle. Hence ζn/2 is the average angular speed
of the fluid circling along C, i.e., the average rate of rotation. The line integral above is also
known as the circulation.


