Lecture Notes on Fluid Dynamics

(1.63J/2.21J)
by Chiang C. Mei, MIT

1.2 Kinematics of Fluid Motion -the Eulerian picture

Consider two neighboring stations (not two fluid particles) \vec{x} and \vec{x}^{\prime} at the same instant t, where $\delta \vec{x}=\vec{x}^{\prime}-\vec{x}$ is small. The fluid velocity at the two stations are related by

$$
\begin{equation*}
\vec{q}\left(\vec{x}^{\prime}, t\right)=\vec{q}(\vec{x}, t)+\left(\vec{x}^{\prime}-\vec{x}\right) \cdot \nabla \vec{q}(\vec{x}, t)+O\left(\vec{x}^{\prime}-\vec{x}\right)^{2} \tag{1.2.1}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\delta \vec{q}(\vec{x}, t)=\vec{q}\left(\vec{x}^{\prime}, t\right)-\vec{q}(\vec{x}, t)=\delta \vec{x} \cdot \nabla \vec{q}(\vec{x}, t)+O(\delta \vec{x})^{2} \tag{1.2.2}
\end{equation*}
$$

Let us introduce the index notation:

$$
\begin{equation*}
q_{1}=u, \quad q_{2}=v, \quad q_{3}=w ; \quad x_{1}=x, \quad x_{2}=y, \quad x_{3}=z \tag{1.2.3}
\end{equation*}
$$

and Einstein's convention: Repeated indices are summed over the range from 1 to 3, and the summation symbol is omitted but implied. For example,

$$
\sum_{i=1}^{3} q_{i} q_{i}=q_{i} q_{i}=q_{1}^{2}+q_{2}^{2}+q_{3}^{3}=\vec{q} \cdot \vec{q}
$$

Thus we may write (1.2.2) as

$$
\begin{equation*}
\delta q_{i}=\delta x_{j} \frac{\partial q_{i}}{\partial x_{j}}, \quad i=1,2,3 \tag{1.2.4}
\end{equation*}
$$

Now

$$
\begin{equation*}
\frac{\partial q_{i}}{\partial x_{j}}=\frac{1}{2}\left(\frac{\partial q_{i}}{\partial x_{j}}+\frac{\partial q_{j}}{\partial x_{i}}\right)+\frac{1}{2}\left(\frac{\partial q_{i}}{\partial x_{j}}-\frac{\partial q_{j}}{\partial x_{i}}\right) \tag{1.2.5}
\end{equation*}
$$

Define the rate-of -strain tensor by

$$
\begin{equation*}
e_{i j}=\frac{1}{2}\left(\frac{\partial q_{i}}{\partial x_{j}}+\frac{\partial q_{j}}{\partial x_{i}}\right) \tag{1.2.6}
\end{equation*}
$$

and the vorticity tensor by

$$
\begin{equation*}
\Omega_{i j}=\frac{1}{2}\left(\frac{\partial q_{i}}{\partial x_{j}}-\frac{\partial q_{j}}{\partial x_{i}}\right) \tag{1.2.7}
\end{equation*}
$$

Note that

$$
\begin{equation*}
e_{i j}=e_{j i}, \quad \Omega_{i j}=-\Omega_{j i} \tag{1.2.8}
\end{equation*}
$$

and (1.2.4) becomes

$$
\begin{equation*}
\delta q_{i}=\delta x_{j} e_{i j}+\delta x_{j} \Omega_{i j} \tag{1.2.9}
\end{equation*}
$$

Let us examine the physics of these terms.

1.2.1 Rate-of-strain tensor

In matrix form, the rate-of -strain tensor is :

$$
\begin{align*}
\left\{e_{i j}\right\} & =\left(\begin{array}{lll}
e_{11} & e_{12} & e_{13} \\
e_{21} & e_{22} & e_{23} \\
e_{31} & e_{32} & e_{33}
\end{array}\right) \\
& =\left(\begin{array}{ccc}
\frac{\partial q_{1}}{\partial x_{1}} & \frac{1}{2}\left(\frac{\partial q_{1}}{\partial x_{2}}+\frac{\partial q_{2}}{\partial x_{1}}\right) & \frac{1}{2}\left(\frac{\partial q_{1}}{\partial x_{3}}+\frac{\partial q_{3}}{\partial x_{1}}\right) \\
\frac{1}{2}\left(\frac{\partial q_{2}}{\partial x_{1}}+\frac{\partial q_{1}}{\partial x_{2}}\right) & \frac{\partial q_{2}}{\partial x_{2}} & \frac{1}{2}\left(\frac{\partial q_{2}}{\partial x_{3}}+\frac{\partial q_{3}}{\partial x_{2}}\right) \\
\frac{1}{2}\left(\frac{\partial q_{3}}{\partial x_{1}}+\frac{\partial q_{1}}{\partial x_{3}}\right) & \frac{1}{2}\left(\frac{\partial q_{3}}{\partial x_{2}}+\frac{\partial q_{2}}{\partial x_{3}}\right) & \frac{\partial q_{3}}{\partial x_{3}}
\end{array}\right) \tag{1.2.10}\\
& =\left(\begin{array}{ccc}
\frac{\partial u}{\partial x} & \frac{1}{2}\left(\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}\right) & \frac{1}{2}\left(\frac{\partial u}{\partial z}+\frac{\partial w}{\partial x}\right) \\
\frac{1}{2}\left(\frac{\partial v}{\partial x}+\frac{\partial u}{\partial y}\right) & \frac{\partial v}{\partial y} & \frac{1}{2}\left(\frac{\partial v}{\partial z}+\frac{\partial w}{\partial y}\right) \\
\frac{1}{2}\left(\frac{\partial w}{\partial x}+\frac{\partial u}{\partial z}\right) & \frac{1}{2}\left(\frac{\partial w}{\partial y}+\frac{\partial v}{\partial z}\right) & \frac{\partial w}{\partial z}
\end{array}\right)
\end{align*}
$$

First, the diagonal terms. It is easy to see that $e_{11}=\partial u / \partial x$ is the rate of stretching per unit length in the direction of $x, e_{22}=\partial v / \partial y$ is the rate of stretching per unit length in the direction of y, and $e_{33}=\partial w / \partial z$ is the rate of stretching per unit length in the direction of z. They are the normal components of the rate of strain tensor.

Note that

$$
\begin{equation*}
e_{11}+e_{22}+e_{33}=e_{k k}=\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}=\nabla \cdot \vec{q} \tag{1.2.11}
\end{equation*}
$$

is the rate of volume dilatation due to fluid motion. For a proof, let us consider a cube with sides $(x, x+\Delta x),(y, y+\Delta y)$ and $(z, z+\Delta z)$. After δt, the side along x will lengthen from Δx to $\Delta x+\Delta x \frac{\partial u}{\partial x} \delta t=\Delta x\left(1+\frac{\partial u}{\partial x} \delta t\right)$. Similarly, the side along y will lengthen from Δy to $\Delta y\left(1+\frac{\partial v}{\partial y} \delta t\right)$, and the side along z lengthens from Δz to $\Delta z\left(1+\frac{\partial w}{\partial z} \delta t\right)$. Consequently the volume $V(t)=\Delta x \Delta y \Delta z$ will change to

$$
\begin{aligned}
V(t+\delta t) & =\Delta x\left(1+\frac{\partial u}{\partial x} \delta t\right) \Delta y\left(1+\frac{\partial v}{\partial y} \delta t\right) \Delta z\left(1+\frac{\partial w}{\partial z} \delta t\right) \\
& =V(t)\left[1+\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}\right) \delta t+O(\delta t)^{2}\right]
\end{aligned}
$$

Hence, the rate of volume dilatation is

$$
\begin{equation*}
\lim _{\delta t=0} \frac{1}{V} \frac{V(t+\delta t)-V(t)}{\delta t}=\frac{1}{V} \frac{d V}{d t}=\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}\right)=\nabla \cdot \vec{q} \tag{1.2.12}
\end{equation*}
$$

Next, the off-diagonal terms. Referring to Figure 1.2.1, consider a plane flow in which $\frac{\partial u}{\partial y}$ and $\frac{\partial v}{\partial x}$ do not vanish. In the time interval δt the side Δx rotates counterclockwise for an angle $\delta \theta_{1}=\frac{\Delta v \delta t}{\Delta x}=\frac{\partial v}{\partial x} \delta t$. The side Δy rotates counterclockwise for an angle $\delta \theta_{2}=-\frac{\Delta u \delta t}{\Delta y}=-\frac{\partial u}{\partial y} \Delta t$. The total rate of angular deformation is

$$
\begin{equation*}
\frac{\delta \theta_{1}}{\delta t}-\frac{\delta \theta_{2}}{\delta t}=\frac{\partial v}{\partial x}+\frac{\partial u}{\partial y} \tag{1.2.13}
\end{equation*}
$$

Figure 1.2.1: Rate of strain tensor components
Thus $e_{12}=e_{x y}$ is a rate of angular deformation, called the rate of shear strain. Other components e_{13} and e_{23} can be interpreted similarly.

1.2.2 Vorticity tensor

The matrix form of $\Omega_{i j}$ is

$$
\begin{align*}
\left\{\Omega_{i j}\right\} & =\left(\begin{array}{ccc}
\Omega_{11} & \Omega_{12} & \Omega_{13} \\
\Omega_{21} & \Omega_{22} & \Omega_{23} \\
\Omega_{31} & \Omega_{32} & \Omega_{33}
\end{array}\right) \\
& =\left(\begin{array}{ccc}
0 & \frac{1}{2}\left(\frac{\partial q_{1}}{\partial x_{2}}-\frac{\partial q_{2}}{\partial x_{1}}\right) & \frac{1}{2}\left(\frac{\partial q_{1}}{\partial x_{3}}-\frac{\partial q_{3}}{\partial x_{1}}\right) \\
\frac{1}{2}\left(\frac{\partial q_{2}}{\partial x_{1}}-\frac{\partial q_{1}}{\partial x_{2}}\right) & 0 & \frac{1}{2}\left(\frac{\partial q_{2}}{\partial x_{3}}-\frac{\partial q_{3}}{\partial x_{2}}\right) \\
\frac{1}{2}\left(\frac{\partial q_{3}}{\partial x_{1}}-\frac{\partial q_{1}}{\partial x_{3}}\right) & \frac{1}{2}\left(\frac{\partial q_{3}}{\partial x_{2}}-\frac{\partial q_{2}}{\partial x_{3}}\right) & 0
\end{array}\right) \tag{1.2.14}\\
& =\left(\begin{array}{ccc}
0 & \frac{1}{2}\left(\frac{\partial u}{\partial y}-\frac{\partial v}{\partial x}\right) & \frac{1}{2}\left(\frac{\partial u}{\partial z}-\frac{\partial w}{\partial x}\right) \\
\frac{1}{2}\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right) & 0 & \frac{1}{2}\left(\frac{\partial v}{\partial z}-\frac{\partial w}{\partial y}\right) \\
\frac{1}{2}\left(\frac{\partial w}{\partial x}-\frac{\partial u}{\partial z}\right) & \frac{1}{2}\left(\frac{\partial w}{\partial y}-\frac{\partial v}{\partial z}\right) & 0
\end{array}\right)
\end{align*}
$$

Because of the anti-symmetry, there are only three independent components, which can also be used to define the vorticity vector $\vec{\zeta}$:

$$
\begin{align*}
\vec{\zeta} & =\nabla \times \vec{q}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
u & v & w
\end{array}\right| \\
& =\vec{i}\left(\frac{\partial w}{\partial y}-\frac{\partial v}{\partial z}\right)+\vec{j}\left(\frac{\partial u}{\partial z}-\frac{\partial w}{\partial x}\right)+\vec{k}\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right) \tag{1.2.15}
\end{align*}
$$

Hence

$$
\left\{\Omega_{i j}\right\}=\frac{1}{2}\left(\begin{array}{ccc}
0 & -\zeta_{3} & \zeta_{2} \tag{1.2.16}\\
\zeta_{3} & 0 & -\zeta_{1} \\
-\zeta_{2} & \zeta_{1} & 0
\end{array}\right)
$$

Figure 1.2.2: Circulation along a closed circle
What is the physical meaning of $\vec{\zeta}$? Consider a plane circular disc A bounded by the circle C of radius a, see Figure 1.2.2. By Stokes' theorem

$$
\iint_{A}(\nabla \times \vec{q}) \cdot \vec{n} d A=\oint_{C} \vec{q} \cdot d \vec{r}
$$

Now let $a \rightarrow 0$, then,

$$
(\nabla \times \vec{q})_{n} \iint_{A} d A=\oint_{C} \vec{q} \cdot d \vec{r}
$$

or,

$$
\frac{1}{2} \zeta_{n}=\frac{1}{2}(\nabla \times \vec{q})_{n}=\frac{1}{a}\left[\frac{1}{2 \pi a} \oint_{C} \vec{q} \cdot d \vec{r}\right]
$$

The quantity

$$
\left[\frac{1}{2 \pi a} \oint_{C} \vec{q} \cdot d \vec{r}\right]
$$

is the average tangential velocity along the circle. Hence $\zeta_{n} / 2$ is the average angular speed of the fluid circling along C, i.e., the average rate of rotation. The line integral above is also known as the circulation.

