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2.5 Stokes flow past a sphere

[Refs]
Lamb: Hydrodynamics

Acheson : Elementary Fluid Dynamics, p. 223 ff

One of the fundamental results in low Reynolds hydrodynamics is the Stokes solution for
steady flow past a small sphere. The apllicatiuon range widely form the determination of
electron charges to the physics of aerosols.

The continuity equation reads
∇ · ~q = 0 (2.5.1)

With inertia neglected, the approximate momentum equation is

0 = −
∇p

ρ
+ ν∇2~q (2.5.2)

Physically, the presssure gradient drives the flow by overcoming viscous resistence, but does
affect the fluid inertia significantly.

Refering to Figure 2.5 for the spherical coordinate system (r, θ, φ). Let the ambient
velocity be upward and along the polar (z) axis: (u, v, w) = (0, 0,W ). Axial symmetry
demands

∂

∂φ
= 0, and ~q = (qr(r, θ), qθ(r, θ), 0)

Eq. (2.5.1) becomes
1

r2

∂

∂r
(r2qr) +

1

r

∂

∂θ
(qθ sin θ) = 0 (2.5.3)

As in the case of rectangular coordinates, we define the stream function ψ to satisify the
continuity equation (2.5.3) identically

qr =
1

r2 sin θ

∂ψ

∂θ
, qθ = −

1

r sin θ

∂ψ

∂r
(2.5.4)

At infinity, the uniform velocity W along z axis can be decomposed into radial and polar
components

qr = W cos θ =
1

r2 sin θ

∂ψ

∂θ
, qθ = −W sin θ = −

1

r sin θ

∂ψ

∂r
, r ∼ ∞ (2.5.5)
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Figure 2.5.1: The spherical coordinates

The corresponding stream function at infinity follows by integration

ψ =
W

2
r2 sin2 θ, r ∼ ∞ (2.5.6)

Using the vector identity

∇× (∇× ~q) = ∇(∇ · ~q) −∇
2~q (2.5.7)

and (2.5.1), we get

∇
2~q = −∇× (∇× ~q) = −∇× ~ζ (2.5.8)

Taking the curl of (2.5.2) and using (2.5.8) we get

∇× (∇× ~ζ) = 0 (2.5.9)

After some straightforward algebra given in the Appendix, we can show that

~q = ∇×

(

ψ~eφ
r sin θ

)

(2.5.10)

and

~ζ = ∇× ~q = ∇×∇×

(

ψ~eφ
r sin θ

)

= −
~eφ

r sin θ

(

∂2ψ

∂r2
+

sin θ

r2

∂

∂θ

(

1

sin θ

∂ψ

∂θ

))

(2.5.11)

Now from (2.5.9)

∇×∇× (∇× ~q) = ∇×∇×

[

∇×

(

∇×
ψ~eφ
r sin θ

)]

= 0
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hence, the momentum equation (2.5.9) becomes a scalar equation for ψ.
(

∂2

∂r2
+

sin θ

r2

∂

∂θ

(

1

sin θ

∂

∂θ

))2

ψ = 0 (2.5.12)

The boundary conditions on the sphere are

qr = 0 qθ = 0 on r = a (2.5.13)

The boundary conditions at ∞ is

ψ →
W

2
r2 sin2 θ (2.5.14)

Let us try a solution of the form:

ψ(r, θ) = f(r) sin2 θ (2.5.15)

then f is governed by the equi-dimensional differential equation:
[

d2

dr2
−

2

r2

]2

f = 0 (2.5.16)

whose solutions are of the form f(r) ∝ rn, It is easy to verify that n = −1, 1, 2, 4 so that

f(r) =
A

r
+Br + Cr2 +Dr4

or

ψ = sin2 θ
[

A

r
+Br + Cr2 +Dr4

]

To satisfy (2.5.14) we set D = 0, C = W/2. To satisfy (2.5.13) we use (2.5.4) to get

qr = 0 =
W

2
+
A

a3
+
B

a
= 0, qθ = 0 = W −

A

a3
+
B

a
= 0

Hence

A =
1

4
Wa3, B = −

3

4
Wa

Finally the stream function is

ψ =
W

2

[

r2 +
a3

2r
−

3ar

2

]

sin2 θ (2.5.17)

Inside the parentheses, the first term corresponds to the uniform flow, and the second term
to the doublet; together they represent an inviscid flow past a sphere. The third term is
called the Stokeslet, representing the viscous correction.

The velocity components in the fluid are: (cf. (2.5.4) :

qr = W cos θ

[

1 +
a3

2r3
−

3a

2r

]

(2.5.18)

qθ = −W sin θ

[

1 −
a3

4r3
−

3a

4r

]

(2.5.19)
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2.5.1 Physical Deductions

1. Streamlines: With respect to the the equator along θ = π/2, cos θ and qr are odd while
sin θ and qθ are even. Hence the streamlines (velocity vectors) are symmetric fore and
aft.

2. Vorticity:

~ζ = ζφ~eφ

(

1

r

∂(rqθ)

∂r
−

1

r

∂qr
∂θ

)

~eφ = −
3

2
Wa

sin θ

r2
~eφ

3. Pressure : From the r-component of momentum equation

∂p

∂r
=
µWa

r3
cos θ(= −µ∇× (∇× ~q))

Integrating with respect to r from r to ∞, we get

p = p
∞
−

3

2

µWa

r3
cos θ (2.5.20)

4. Stresses and strains:
1

2
err =

∂qr
∂r

= W cos θ

(

3a

2r2
−

3a3

2r4

)

On the sphere, r = a, err = 0 hence σrr = 0 and

τrr = −p + σrr = −p
∞

+
3

2

µW

a
cos θ (2.5.21)

On the other hand

erθ = r
∂

∂r

(

qθ
r

)

+
1

r

∂qr
∂θ

= −
3

2

Wa3

r4
sin θ

Hence at r = a:

τrθ = σrθ = µerθ = −
3

2

µW

a
sin θ (2.5.22)

The resultant stress on the sphere is parallel to the z axis.

Σz = τrr cos θ − τrθ sin θ = −p
∞

cos θ +
3

2

µW

a

The constant part exerts a net drag in z direction

D =
∫ 2π

o
adφ

∫ π

o
dθ sin θΣz ==

3

2

µW

a
4πa2 = 6πµWa (2.5.23)

This is the celebrated Stokes formula.

A drag coefficient can be defined as

CD =
D

1
2
ρW 2πa2

=
6πµWa

1
2
ρW 2πa2

=
24

ρW (2a)
µ

=
24

Red
(2.5.24)
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5. Fall velocity of a particle through a fluid. Equating the drag and the buoyant weight
of the eparticle

6πµWoa =
4π

3
a3(ρs − ρf )g

hence

Wo =
2

9
g

(

a2

ν

∆ρ

ρf

)

= 217.8

(

a2

ν

∆ρ

ρf

)

in cgs units. For a sand grain in water,

∆ρ

ρf
=

2.5 − 1

1
= 1.5, ν = 10−2cm2/s

Wo = 32, 670 a2cm/s (2.5.25)

To have some quantitative ideas, let us consider two sand of two sizes :

a = 10−2cm = 10−4m : Wo = 3.27cm/s;

a = 10−3cm = 10−5 = 10µm, Wo = 0.0327cm/s = 117cm/hr

For a water droplet in air,

∆ρ

ρf
=

1

10−3
= 103, ν = 0.15 cm2/sec

then

Wo =
(217.8)103

0.15
a2 (2.5.26)

in cgs units. If a = 10−3 cm = 10µm, then Wo = 1.452 cm/sec.

Details of derivation

Details of (2.5.10).

∇×

(

ψ

r sin θ
~eφ

)

=
1

r2 sin θ

∣

∣

∣

∣

∣

∣

∣

~er ~eθ r sin θ~eφ
∂
∂r

∂
∂θ

∂
∂φ

0 0 ψ

∣

∣

∣

∣

∣

∣

∣

= ~er

(

1

r2 sin θ

∂ψ

∂θ

)

− ~eθ

(

1

r sin θ

∂ψ

∂r

)
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Details of (2.5.11).

∇×∇×
ψ~eφ
r sin θ

= ∇× ~q

=
1

r2 sin θ

∣

∣

∣

∣

∣

∣

∣

~er r~eθ r sin θ~eφ
∂
∂r

∂
∂θ

∂
∂φ

1
r2 sin θ

∂ψ
∂θ

−1
sin θ

∂ψ
∂r

0

∣

∣

∣

∣

∣

∣

∣

=
~eθ

r sin θ

[

∂2φ

∂r2
+

sin θ

r2

∂

∂θ

(

1

sin θ

∂ψ

∂θ

)]


