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2.7.1 Brownian diffusion of particles

Particles of sub-micrometer size collide with air molecules randomly. and behave collectively
as a gas.

Let n(z) = number of particles per unit volume, i.e, the number density of Brownian
particles in air. By the perfect gas law,

p = nkT, (2.7.1)

where k is Boltzmann’s constant
k = R/L,

R = Universal gas constant = 8.317 × 107ergs/degree/mole

and

L = Avogadro’s number = 6.025 × 1023molecules /mole = 2calories /degree /mole

When the cloud of particles is in hydrostatic equilibrium,

dp

dz
= −ρg = −nmg (2.7.2)

where m is the mass per particle. Combining the preceding two equations,

−
dp

p
=

mg

kT
dz

hence,

p(z) = p(0) exp
(

−
mgz

kT

)

(2.7.3)

and

n(z) = n(0) exp
(

−
mgz

kT

)

(2.7.4)
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which is Bolzmann’s law.

Alternatively, random collisions on the microscale give rise to diffusion on the macroscale.
At the equilibrium state, diffusion and gravitational convection must balance each other so
that,

−D
dn

dz
− nV = 0 (2.7.5)

where V = fall velocity. Equating Stokes drag with the particle weight 6πµaV = mg, we get

V =
mg

6πµa
(2.7.6)

Solving (2.7.5) and using (2.7.6),

n(z) = n(0) exp

(

−
mgz

D6πµa

)

(2.7.7)

Upon comparison with (2.7.4), the Brownian diffusivity can be identified

D =
kT

6πµa
(2.7.8)

This formula, due to Einstein (1905) and Smoluchowski (1906), is valid if 2a is smaller
than the mean free path ` of air molecules. Otherwise Cunningham’s empirical correction is
needed,

D = Cc

(

kT

6πµa

)

(2.7.9)

where

Cc = 1 +
`

a

[

1.257 + 0.4 exp
(

−
1.1a

`

)]

(2.7.10)

is the correction factor.

For aerosol particles in air under normal temperature, the diffusivity is

D ≈
1 × 10−3

2a

10−2

0.15 × 10−3
=

0.325 × 10−11

a
(2.7.11)

As a rough order-estimate (Levich), we use Eistein’s formula for water at room temperature,
the Brownian diffusivity for colloidal particles is

D ≈
0.55 × 10−13

a
(2.7.12)

In the following table taken from Seinfeld, p. 325, D and ν are compared. For gases, the
mean free path is typically ` = 10−5 ∼ 10−6 cm.
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2 a (µ m) D (cm2/s (T = 20◦) V (cm/sec) (ρs = 1g/cm3)
0.001 5.14 ×10−2

0.01 5.25 ×10−4

0.1 6.75 ×10−6 8.62 ×10−5

1 2.77 ×10−7 3.52 ×10−3

10 3.07 ×10−3

100 30.3

2.7.2 Coagulation due to Brownian diffusion

When small particles are bounced around randomly by surrounding fluid molecules, they
may come so close to one another that Van der Waals force binds them together. This is
coagulation. In a moving fluid additional factors such as fluid shear and Columb forces may
intervene. A simple model (by Smoluchowski) for a stationary fluid with identical spherical
particles of radius a is as follows .

Figure 2.7.1: Left: A spherical shell. Right: Two spherical particles in collision.

Let us focus attention on a fixed particle. Consider a spherical shell from r to r + dr,
Figure 2.7.2-left. The rate of increase of particles inside the shell is

∂n

∂t
4πr2dr

which must be equal to the net influx through the two surfaces of the shell

−
∂

∂r

(

−4πr2D
∂n

∂r

)

dr

thus,

∂n

∂t
=

D

r2

∂

∂r

(

r2∂n

∂r

)

(2.7.13)
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Assume that whenever two particles come into contact they stick to each other and become
one. Therefore the spherical surface of radius 2a concentric with the stationary particle acts
as a sink, on which n = 0, i.e.,

n = 0 r = 2a (2.7.14)

n → n∞ r → ∞ (2.7.15)

See Figure 2.7.2-right. The initial condition is

n = n∞, 2a < r < ∞ t = 0 (2.7.16)

Th solution can be facilitated by introducing

w =
n∞ − n

n∞

(

r

2a

)

(2.7.17)

and

x =
r − 2a

2a
(2.7.18)

it is shown in Appendix A that
∂w

∂t
= D′

∂2w

∂x2
(2.7.19)

where

D′ =
D

(2a)2
(2.7.20)

The boundary conditions become,

w = 1, x = 0, (2.7.21)

while
w = 0, x = ∞ (2.7.22)

The initial condition is
w = 0, t = 0, x > 0 (2.7.23)

The solution, which can be obtained by the similarity method (see Appendix B), is:

w = 1 − erf

(

x

2
√

Dt

)

= 1 −

√

2

π

∫ x

2

√
Dt

0
e−z2

dz (2.7.24)

or,

n∞ − n(r, t)

n∞

= 1 −

√

2

π

∫ r−2a

2
√

Dt

0
e−z2

dz

or

1 −
n

n∞
= 1 −

2a

r



1 −

√

2

π

∫ r−2a

2

√
Dt

0
e−z2

dz
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Finally, the number concentration near a fixed particle is

n(r, t)

n∞

= 1 −
2a

r
+

2a

r

√

2

π

∫ r−2a

2

√
Dt

o
e−z2

dz = 1 −
2a

r
+

2a

r
erf
(

r − 2a

2Dt

)

(2.7.25)

We now use this information to find the rate of coagulation when all particles are moving,
by calculating the number density of particles in the process of collision. Starting from one
particle, the rate of flux of particle across the sphere of radius r = 2a is

J(t) = 4πr2D

[

∂n

∂r

]

r=2a

= 4πD(2a)n∞

(

1 +
2a

√
πDt

)

(2.7.26)

When

t �
(2a)2

D

we get the steady state limit,

J(∞) = 4πD(2a)n∞ = 8πDan∞ (2.7.27)

Let us estimate D = 10−4 cm2/sec, and 2a = 10−6cm, then the time to steady state is
(2a)2

D
= 10−8sec and is very short.

Each stationary particle will be hit by, hence coagulate with, 8πD a n∞ particles per
second. Since all particles are moving, the steady rate of collision (coagulation) must be
doubled, i.e., 16πDan∞. As the consequence, the number density of particles. must decrease.
Each collision reduces the number of particles by 1. Hence

dn∞

dt
= −16πaDn2

∞
(2.7.28)

Thus
dn∞

dt
= −16πaDn2

∞
where D =

kT

6πµa
or

dn∞

n2
∞

= −16πaDdt

which may integrated to

−

[

1

n∞

−
1

n∞(0)

]

= −16πaDT

Note that

16πaD =
16πakT

6πµa
=

8

3

kT

µ

Finally,

n∞(t) =
n∞(0)

1 + [16πaD]n∞(0)t
=

n∞(0)

1 + Kon∞(0)t
(2.7.29)
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where

Ko = 16πaD =
8

3

kT

µ
(2.7.30)

is the coagulation constant while

Tcoag =
1

Kon∞(0)
(2.7.31)

is the coagulation time.
From Fuchs, Table 28, p 291.

a (cm) 10−7 10−6 10−5 10−4 10−3

Ko × 1010 (cm3/sec) 323 34 5.56 3.19 2.98

How long does it take for n∞(t) to drop to one-tenth of its initial value?

t =

n∞(0)
n∞

− 1

Kon∞(0)
(2.7.32)

where

K =
4

3

kT

µ

It can be estimated that t 1

10

∼ 125 sec, if 2a = 0.1µm, and T = 293◦K.

2.7.3 Appendix A: Proof of (2.7.19)

∂w

∂t
= −

r

2a

1

n∞

∂n

∂t

∂w

∂x
=

∂w/∂r

∂x/∂r
= 2a

∂w

∂r
= 2a

[

1

2a

n∞ − n

n∞

−
r

2a

1

n∞

∂n

∂r

]

=
n∞ − n

n∞

−
r

n∞

∂n

∂r

∂2w

∂x2
= 2a

[

−
1

n∞

∂n

∂r
−

1

n∞

∂n

∂r
−

r

n∞

∂2n

∂r2

]

= −
2a

n∞

r

[

2

r

∂n

∂r
+

∂2n

∂r2

]

Substituting these results in (2.7.19), we get

∂n

∂t
= D′(2a)2

(

∂2n

∂r2
+

2

r

∂n

∂r

)

=
D

r2

∂

∂r

(

r2∂n

∂r

)

(2.7.33)

with
D = D′(2a)2
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2.7.4 Appendix B: Solution of (2.7.19) by the method of similarity

Let us seek a transformation

x = λax′ t = λbt′ w = λcw′

such that the initial-boundary-value problem retains the same form.

d

∂t
→

∂

∂t′
λ−b ∂

∂x
→

∂

∂x′
λ−a

∂w

∂t
= D′

∂2w

∂x2
→ λ−b+c

(

∂w′

∂t′

)

= D′λ−2a+c

(

∂2w′

∂x′2

)

For invariance we require, −2a = −b, a = b/2. Clearly

ξ =
x

2
√

D′t
=

λb/2x

2
√

D′λb′t′
=

x′

2
√

D′t′

satifies the requirement. From the boundary conditions,

x′λa = 0 λcw′ = 1

which requires that
c = 0 (2.7.34)

The initial condition as well as the boundary conditon at x′λa = ∞ are trivially satisfied.
The similarity solution is

w = w(ξ) = w

(

x

2
√

D′t

)

Some algebra:
∂w

∂t
= w′

∂ξ

∂t
= w′

x

2
√

D′

(

−
1

2t2/3

)

= −
w′ξ

2t

D′
∂2w

∂x2
= D′

w′′

4D′t
=

w′′

4t′

hence

−
w′ξ

2
=

w′′

4
or

w′′

w′
= −2ξ

d log w′

dξ
= −2ξ

Integrating
log(w′) = −ξ2 + Const,
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and

w′ = ce−ξ2

=
dw

dξ

Thus
w = −c

∫

∞

z
e−z2

dz

so that w(∞) = 0. Since
w = 1, ξ = 0

1 = −c
∫

∞

0
e−z2

dz

The integral is
√

π/2. Hence

c = −

√

2

π

w =

√

2

π

∫

∞

ξ
e−z2

dz =

√

2

π

[

∫

∞

0
−
∫ ξ

0
e−z2

dz

]

= 1 −

√

2

π

∫ x

2

√
Dt

o
e−z2

dz


