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4.3 Buoyancy-driven convection - The Valley Wind

ref: Prandtl: Fluid Dynamics.

Due to solar heating during the day, a mountain slope may be warmer than the surround-
ing air in a summer night. Let the air near a mountain slope be stably stratified

To = T0 + Ny′, (4.3.1)

where T0 = constant, and N > 0. Let the slope temperature be :

Ts = T1 + Ny′, (4.3.2)

where T1 > T0. See the left of Figure 4.3.2. Consider first the static equilibrium:

Figure 4.3.1: Thermal convection along a slope

0 = −
dpo

dz
− ρog

hence
po = po(∞) +

∫

∞

z
ρo g dz

Let A and B be two points with the same elevation but A is on the slope and B is in the
air. Since pA < pB,

∂po

∂x
< 0
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implying
∂po

∂x′
< 0

The pressure gradient must drive an upward flow along the slope.
Let us consider the dynamics. Let

T (x, y) = To + θ(y) (4.3.3)

and
ρ(x, y) = ρo + S(y) = static density + dynamic density (4.3.4)

By the equation of state,

ρ = ρ0 [1 − β (T − T0)] = ρ0 [1 − β (To − T0)] − ρ0βθ.

Therefore
ρo = ρ0 [1 − β (To − T0)] = ρ0 (1 − βNy′) (4.3.5)

and
S(x, y) = −ρ0βθ(x, y) (4.3.6)

Note by ratation of coordinates,

To − T0 = Ny′ = N(x sin α + y cos α). (4.3.7)

The flow equations are:
ux + vy = 0 (4.3.8)

ρ (uux + vuy) = −pdx + µ (uxx + uyy) − (ρ − ρa) g sin α (4.3.9)

ρ (uvx + vvu) = −pdy + µ (vxx + vyy) − (ρ − ρa) g cos α (4.3.10)

uTx + vTy = k (Txx + Tyy) , (4.3.11)

where T is the total temperature and

k =
K

ρ̄ocp
.

is the thermal diffusivity. Since ∂/∂x = 0, v = 0 from continuity. From Eqn. (4.3.9)

νuyy + (βg sin α) θ = 0. (4.3.12)

after invoking Boussinesq approximation. In Eqn. (4.3.11),

∂T

∂x
=

∂To

∂x
= N sin α.

Therefore,
uN sin α = kθyy. (4.3.13)
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Combining Eqns. (4.3.12) and (4.3.13), we get

d4u

dy4
+

(

βgN sin2 α

νk

)

u = 0 (4.3.14)

and
d4θ

dy4
+

(

βgN sin2 α

νk

)

θ = 0 (4.3.15)

Let

`4 =
4νk

βgA sin2 α
and y = `η (4.3.16)

then
d4u

dη4
+ 4u = 0; and

d4θ

dη4
+ 4θ = 0 (4.3.17)

The velocity is
u = U e−η sin η so that u(0) = 0 (4.3.18)

The temperature is
θ = θ0e

−η cos η (4.3.19)

The boundary conditions at η ∼ ∞ are satisfied. In order that θ(0) = T1 − T0 on η = 0 we
choose

θ0 = T1 − T0 (4.3.20)

Note that the boundary layer thickness is

δ ∼ O(`) ∼

(

4νk

ρgN sin2 α

)1/4

(4.3.21)

Thus if α ↓, δ ↑ as 1/ sin2 α.
Using Eqn. (4.3.13), we get

N sin α U e−η sin η = k

(

βgN sin2 α

4νk

)1/2

2θ0 e−η sin η.

Hence,

U = θ0

(

βgk

Nν

)1/2

(4.3.22)

Finally

u = (T1 − T0)

(

βgk

Nν

)1/2

e−η sin η. (4.3.23)

and
θ = (T1 − T0)e

−η cos η (4.3.24)
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It is easy to show from (4.3.13) that the total mass flux rate is

M =
∫

∞

0

ρ u dy = ρ0 β k
dθ

dy

∣

∣

∣

∣

∣

0

. (4.3.25)

Note from (4.3.22) that U is independent of α. If α ↓, the buoyancy force is weaker, but
the shear rate ∂u/∂y is smaller, hence the wall resistance is smaller. U is not reduced!

Figure 4.3.2: Wind along a valley due to feeding from mountains

On a warm slope (due to solar heating during the day) , air rises at night. If there are
two slopes forming a valley, fluid must be supplied from the bottom of the valley; this is the
reason for valley wind blowing from low altitude to high.

On a cold slope (due to radiation loss at night) air sinks at high noon. Valley wind must
flow from high to low.


