Lecture notes in Fluid Dynamics

(1.63J/2.01J)
by Chiang C. Mei, MIT
4-6dispersion.tex
[Refs]:

1. Aris:
2. Fung, Y. C. Biomechanics

4.7 Dispersion in an oscillatory shear flow

Relevant to the convective diffusion of salt and/or pollutants in a tidal channel, and chemicals in a blood vessel, Let us examine the Taylor dispersion in an oscillating flow in a pipe. Let the velocity profile be given,

$$
\begin{equation*}
u=U_{s}(r)+\Re\left[U_{w}(r) e^{-i \omega t}\right], \quad 0<r<a . \tag{4.7.1}
\end{equation*}
$$

The transport equation for the concentration of a solvent is recalled

$$
\begin{equation*}
\frac{\partial C}{\partial t}+\frac{\partial(u C)}{\partial x}=D\left(\frac{\partial^{2} C}{\partial x^{2}}+\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial C}{\partial r}\right)\right) \tag{4.7.2}
\end{equation*}
$$

Assume the pipe to be so small that diffusion affects the whole radius within one period or so, i.e.,

$$
\begin{equation*}
\tau_{o} \sim \frac{2 \pi}{\omega} \sim \frac{a^{2}}{D} \tag{4.7.3}
\end{equation*}
$$

We shall be interested in longitudinal diffusion across L much greater than a. Let U_{o} be the scale of U and

$$
\begin{equation*}
x=L x^{\prime}, r=a r^{\prime}, u=U_{o} u^{\prime}, t=\frac{a^{2}}{D} t^{\prime}, \Omega=\frac{\omega a^{2}}{D} \tag{4.7.4}
\end{equation*}
$$

Equation (4.7.2) is nomalized to

$$
\begin{equation*}
\frac{\partial C^{\prime}}{\partial t^{\prime}}+\frac{U a}{D} \frac{a}{L} \frac{\partial\left(u^{\prime} C^{\prime}\right)}{\partial x^{\prime}}=\frac{a^{2}}{L^{2}} \frac{\partial^{2} C^{\prime}}{\partial x^{\prime 2}}+\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial C}{\partial r}\right) \tag{4.7.5}
\end{equation*}
$$

Let the Péclét number $P e=U a / D=O(a / L)^{0}$ be of (4.7.5) becomes

$$
\begin{equation*}
\frac{\partial C^{\prime}}{\partial t^{\prime}}+\epsilon P e \frac{\partial\left(u^{\prime} C^{\prime}\right)}{\partial x^{\prime}}=\epsilon^{2} \frac{\partial^{2} C^{\prime}}{\partial x^{\prime 2}}+\frac{1}{r} \frac{\partial}{\partial r^{\prime}}\left(r^{\prime} \frac{\partial C^{\prime}}{\partial r^{\prime}}\right) \tag{4.7.6}
\end{equation*}
$$

with the boundary conditons

$$
\begin{equation*}
\frac{\partial C^{\prime}}{\partial r^{\prime}}=0, \quad r^{\prime}=0,1 \tag{4.7.7}
\end{equation*}
$$

with

$$
\begin{equation*}
u^{\prime}=U_{s}^{\prime}+\Re U_{w}^{\prime} e^{-i \Omega t^{\prime}} \tag{4.7.8}
\end{equation*}
$$

For brevity we drop the primes from now on.

4.7.1 Multiple scale analysis-homogenization

For convenience let us repeat the perturbation arguments of the last section.
There are three time scales : diffusion time across a, convection time across L, and diffusion time across L. Their ratios are :

$$
\begin{equation*}
\frac{a^{2}}{D}: \frac{L}{U_{o}}: \frac{L^{2}}{D}=1: \frac{1}{\epsilon}: \frac{1}{\epsilon^{2}}, \tag{4.7.9}
\end{equation*}
$$

the smallest time scale being comparable to the oscillation period. Upon introducing the multiple time coordinates

$$
\begin{equation*}
t, t_{1}=\epsilon t, t_{2}=\epsilon^{2} t \tag{4.7.10}
\end{equation*}
$$

and the multiple scale expansions.

$$
\begin{equation*}
C=C_{0}+\epsilon C_{1}+\epsilon^{2} C_{2}+\ldots \tag{4.7.11}
\end{equation*}
$$

where $C_{i}=C_{i}\left(x, r, t, t_{1}, t_{2}\right)$, then the perturbation problems are
$O\left(\epsilon^{0}\right)$:

$$
\begin{equation*}
\frac{\partial C_{0}}{\partial t}=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial C_{0}}{\partial r}\right) \tag{4.7.12}
\end{equation*}
$$

with the boundary conditions:

$$
\begin{equation*}
\frac{\partial C_{0}}{\partial r}=0, \quad r=0,1 \tag{4.7.13}
\end{equation*}
$$

$O(\epsilon)$:

$$
\begin{equation*}
\frac{\partial C_{0}}{\partial t_{1}}+\frac{\partial C_{1}}{\partial t}+P e \frac{\partial\left(u C_{0}\right)}{\partial x}=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial C_{1}}{\partial r}\right) \tag{4.7.14}
\end{equation*}
$$

with:

$$
\begin{equation*}
\frac{\partial C_{1}}{\partial r}=0, \quad r=0,1 \tag{4.7.15}
\end{equation*}
$$

$O\left(\epsilon^{2}\right):$

$$
\begin{equation*}
\frac{\partial C_{0}}{\partial t_{2}}+\frac{\partial C_{1}}{\partial t_{1}}+\frac{\partial C_{2}}{\partial t}+P e \frac{\partial\left(u C_{1}\right)}{\partial x}=\frac{\partial^{2} C_{0}}{\partial x^{2}}+\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial C_{2}}{\partial r}\right) \tag{4.7.16}
\end{equation*}
$$

with

$$
\begin{equation*}
\frac{\partial C_{2}}{\partial r}=0, \quad r=0,1 \tag{4.7.17}
\end{equation*}
$$

Ignoring the transient that dies out quickly and focusing attention to the long-time evolution, i.e., $t_{1}=O(1)$, the solution at $O\left(\epsilon^{0}\right)$ is ${ }^{1}$

$$
\begin{equation*}
C_{0}=C_{0}\left(x, t_{1}, t_{2}\right), \tag{4.7.18}
\end{equation*}
$$

${ }^{1}$ Strictly speaking the solution is

$$
C_{0}=C_{00}\left(x, t_{1}, t_{2}\right)+\sum_{0}^{\infty} C_{0 n}\left(x, t_{1}, t_{2}\right) e^{-\left(k_{n}^{\prime}\right)^{2} t} J_{0}\left(k_{n}^{\prime} r\right)
$$

where k_{n}^{\prime} is the n-th root of $J_{0}^{\prime}(k a)=0$. The series terms die out quicly in $t \gg 1$ and $t_{1} \ll 1$, leaving the limit C_{00} which is independent of t. (Dr. E. Qian, 1993)

At $O(\epsilon)$, let the known velocity be

$$
\begin{equation*}
u=U_{s}(y)+\Re\left(U_{w}(y) e^{-i \Omega t}\right) \tag{4.7.19}
\end{equation*}
$$

then

$$
\begin{equation*}
\frac{\partial C_{0}}{\partial t_{1}}+\frac{\partial C_{1}}{\partial t}+P e\left\{U_{s}+\Re\left[U(r) e^{-i \Omega t}\right]\right\} \frac{\partial C_{0}}{\partial x}=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial C_{1}}{\partial r}\right) \tag{4.7.20}
\end{equation*}
$$

Denoting the period average by overbars,

$$
\bar{f}=\frac{\Omega}{2 \pi} \int_{t}^{t+2 \pi / \Omega} f d t
$$

and taking the period average,

$$
\begin{equation*}
\frac{\partial C_{0}}{\partial t_{1}}+P e U_{s} \frac{\partial C_{0}}{\partial x}=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial \bar{C}_{1}}{\partial r}\right) \tag{4.7.21}
\end{equation*}
$$

with

$$
\begin{equation*}
\frac{\partial \bar{C}_{1}}{\partial r}=0, \quad r=0,1 \tag{4.7.22}
\end{equation*}
$$

Let us now integrate (or average) across the pipe, and get

$$
\begin{equation*}
\frac{\partial C_{0}}{\partial t_{1}}+P e\left\langle U_{s}\right\rangle \frac{\partial C_{0}}{\partial x}=0 \tag{4.7.23}
\end{equation*}
$$

where angle brackets denote averaging over the cross section.

$$
\langle h\rangle=\frac{1}{\pi} \int_{0}^{1} 2 \pi r h d r
$$

Now subtract (4.7.23) from (4.7.20)

$$
\begin{equation*}
\frac{\partial C_{1}}{\partial t}+P e\left\{\tilde{U}_{s}+\Re\left[U_{w} e^{i \Omega t}\right]\right\} \frac{\partial C_{0}}{\partial x}=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial C_{1}}{\partial r}\right) \tag{4.7.24}
\end{equation*}
$$

where

$$
\begin{equation*}
\tilde{U}=U_{s}(y)-\left\langle U_{s}\right\rangle \tag{4.7.25}
\end{equation*}
$$

is the velocity nonuniformity
Now C_{1} is governed by a linear equation, we can assume the solution to be proportional to the forcing and composed of a steady part and a time harmonic part, i.e.,

$$
\begin{equation*}
C_{1}=P e \frac{\partial C_{0}}{\partial x}\left\{B_{s}(r)+\Re\left[B_{w}(r) e^{-i \Omega t}\right]\right\} \tag{4.7.26}
\end{equation*}
$$

then

$$
\begin{equation*}
\frac{1}{r} \frac{d}{d r}\left(r \frac{d B_{s}}{d r}\right)=\tilde{U}(r) \tag{4.7.27}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{r} \frac{d}{d r}\left(r \frac{d B_{w}}{d r}\right)+i \Omega B_{w}=U_{w}(r) \tag{4.7.28}
\end{equation*}
$$

with the boundary conditions

$$
\begin{equation*}
\frac{d B_{s}}{d r}=0 \quad \text { and } \quad \frac{d B_{w}}{d r}=0, r=0,1 \tag{4.7.29}
\end{equation*}
$$

After solving for B_{s}, B_{w} we go to $O\left(\epsilon^{2}\right)$, i.e., (4.7.16) :

$$
\begin{align*}
\frac{\partial C_{0}}{\partial t_{2}} & +\frac{\partial C_{1}}{\partial t_{1}}+\frac{\partial C_{2}}{\partial t} \\
& +P e^{2}\left\{\left\langle U_{s}\right\rangle+\tilde{U}_{s}+\Re\left[U_{w} e^{-i \Omega t}\right]\right\}\left\{B_{s}+\Re\left[B_{w}(y) e^{-i \Omega t}\right]\right\} \frac{\partial^{2} C_{0}}{\partial x^{2}} \\
& =\frac{\partial^{2} C_{0}}{\partial x^{2}}+\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial C_{2}}{\partial r}\right) \tag{4.7.30}
\end{align*}
$$

which is a linear PDE for C_{2}. From(4.7.26) and (4.7.23) we find

$$
\begin{equation*}
\frac{\partial C_{1}}{\partial t_{1}}=-P e^{2} \frac{\partial^{2} C_{0}}{\partial x^{2}}\left\langle U_{s}\right\rangle\left\{B_{s}(r)+\Re\left[B_{w}(r) e^{-i \Omega t}\right]\right\} \tag{4.7.31}
\end{equation*}
$$

It follows that

$$
\begin{align*}
\frac{\partial C_{0}}{\partial t_{2}} & +\frac{\partial C_{2}}{\partial t} \\
& +P e^{2}\left\{\tilde{U}_{s}+\Re\left[U_{w} e^{-i \Omega t}\right]\right\}\left\{B_{s}+\Re\left[B_{w}(r) e^{-i \Omega t}\right]\right\} \frac{\partial^{2} C_{0}}{\partial x^{2}} \\
& =\frac{\partial^{2} C_{0}}{\partial x^{2}}+\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial C_{2}}{\partial r}\right) \tag{4.7.32}
\end{align*}
$$

Taking the time average over a period,

$$
\begin{equation*}
\frac{\partial C_{0}}{\partial t_{2}}+P e^{2}\left\{\tilde{U}_{s} B_{s}+\frac{1}{2} \Re\left[U_{w} B_{w}^{*}\right]\right\} \frac{\partial^{2} C_{0}}{\partial x^{2}}=\frac{\partial^{2} C_{0}}{\partial x^{2}}+\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial \bar{C}_{2}}{\partial r}\right) \tag{4.7.33}
\end{equation*}
$$

with

$$
\begin{equation*}
\frac{\partial \bar{C}_{2}}{\partial r}=0 \quad r=0,1 \tag{4.7.34}
\end{equation*}
$$

Averaging (4.7.33) across the pipe, we get

$$
\begin{equation*}
\frac{\partial C_{0}}{\partial t_{2}}=E \frac{\partial^{2} C_{0}}{\partial x^{2}} \tag{4.7.35}
\end{equation*}
$$

with

$$
\begin{equation*}
E=1-P e^{2}\left\{\left\langle\tilde{U}_{s} B_{s}\right\rangle+\frac{1}{2} \Re\left\langle U_{w} B_{w}^{*}\right\rangle\right\} \tag{4.7.36}
\end{equation*}
$$

which is the effective diffusion coefficient or the dispersion coefficient. The first part is of molecular origin; the second part is due to fluid shear.

Finally we add (4.7.23) and (4.7.35) to get:

$$
\begin{equation*}
\left(\frac{\partial}{\partial t_{1}}+\epsilon \frac{\partial}{\partial t_{2}}\right) C_{0}+P e\left\langle U_{s}\right\rangle \frac{\partial C_{0}}{\partial x}=\epsilon E \frac{\partial^{2} C_{0}}{\partial x^{2}} \tag{4.7.37}
\end{equation*}
$$

This describes the convective diffusion of the area averaged concentration, which is certainly of practical value.

After the perturbation analysis is complete, there is no need to use multiple scales; we may now write

$$
\begin{equation*}
\frac{\partial C_{0}}{\partial t_{1}}+P e\left\langle U_{s}\right\rangle \frac{\partial C_{0}}{\partial x}=\epsilon E \frac{\partial^{2} C_{0}}{\partial x^{2}} \tag{4.7.38}
\end{equation*}
$$

still in dimensionless form. This equation governs the convective diffusion of the crosssectional average, after the initial transient is smoothed out.

Homework: Find the dispersion coefficient E in the oscillatory flow in a circular pipe and carry out the necesary numerical calculations.
Homework (mini research) : Find the dispersion coefficient E in the oscillatory flow in a blood vessel with elastic wall.

