4-6dispersion.tex [Refs]:

1. Aris:

2. Fung, Y. C. Biomechanics

4.7 Dispersion in an oscillatory shear flow

Relevant to the convective diffusion of salt and/or pollutants in a tidal channel, and chemicals in a blood vessel, Let us examine the Taylor dispersion in an oscillating flow in a pipe. Let the velocity profile be given,

$$u = U_s(r) + \Re \left[U_w(r) e^{-i\omega t} \right], \quad 0 < r < a.$$
(4.7.1)

The transport equation for the concentration of a solvent is recalled

$$\frac{\partial C}{\partial t} + \frac{\partial (uC)}{\partial x} = D\left(\frac{\partial^2 C}{\partial x^2} + \frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial C}{\partial r}\right)\right)$$
(4.7.2)

Assume the pipe to be so small that diffusion affects the whole radius within one period or so, i.e.,

$$\tau_o \sim \frac{2\pi}{\omega} \sim \frac{a^2}{D} \tag{4.7.3}$$

We shall be interested in longitudinal diffusion across L much greater than a. Let U_o be the scale of U and

$$x = Lx', r = ar', u = U_o u', t = \frac{a^2}{D}t', \Omega = \frac{\omega a^2}{D}$$
 (4.7.4)

Equation (4.7.2) is nomalized to

$$\frac{\partial C'}{\partial t'} + \frac{Ua}{D} \frac{a}{L} \frac{\partial (u'C')}{\partial x'} = \frac{a^2}{L^2} \frac{\partial^2 C'}{\partial x'^2} + \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial C}{\partial r} \right)$$
(4.7.5)

Let the Péclét number $Pe = Ua/D = O(a/L)^0$ be of (4.7.5) becomes

$$\frac{\partial C'}{\partial t'} + \epsilon P e \frac{\partial (u'C')}{\partial x'} = \epsilon^2 \frac{\partial^2 C'}{\partial x'^2} + \frac{1}{r} \frac{\partial}{\partial r'} \left(r' \frac{\partial C'}{\partial r'} \right)$$
(4.7.6)

with the boundary conditons

$$\frac{\partial C'}{\partial r'} = 0, \quad r' = 0, 1 \tag{4.7.7}$$

with

$$u' = U'_s + \Re U'_w e^{-i\Omega t'}$$
(4.7.8)

For brevity we drop the primes from now on.

4.7.1 Multiple scale analysis-homogenization

For convenience let us repeat the perturbation arguments of the last section.

There are three time scales : diffusion time across a, convection time across L, and diffusion time across L. Their ratios are :

$$\frac{a^2}{D} : \frac{L}{U_o} : \frac{L^2}{D} = 1 : \frac{1}{\epsilon} : \frac{1}{\epsilon^2},$$
(4.7.9)

the smallest time scale being comparable to the oscillation period. Upon introducing the multiple time coordinates

$$t, t_1 = \epsilon t, t_2 = \epsilon^2 t$$
 (4.7.10)

and the multiple scale expansions.

$$C = C_0 + \epsilon C_1 + \epsilon^2 C_2 + \dots$$
 (4.7.11)

where $C_i = C_i(x, r, t, t_1, t_2)$, then the perturbation problems are $O(\epsilon^0)$:

 $\sim \sim$

$$\frac{\partial C_0}{\partial t} = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial C_0}{\partial r} \right) \tag{4.7.12}$$

with the boundary conditions:

$$\frac{\partial C_0}{\partial r} = 0, \quad r = 0, 1.$$
 (4.7.13)

 $O(\epsilon)$:

 $O(\epsilon^2)$:

$$\frac{\partial C_0}{\partial t_1} + \frac{\partial C_1}{\partial t} + Pe \frac{\partial (uC_0)}{\partial x} = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial C_1}{\partial r} \right)$$
(4.7.14)

with:

$$\frac{\partial C_1}{\partial r} = 0, \quad r = 0, 1.$$
 (4.7.15)

$$\frac{\partial C_0}{\partial t_2} + \frac{\partial C_1}{\partial t_1} + \frac{\partial C_2}{\partial t} + Pe \frac{\partial (uC_1)}{\partial x} = \frac{\partial^2 C_0}{\partial x^2} + \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial C_2}{\partial r} \right)$$
(4.7.16)

with

$$\frac{\partial C_2}{\partial r} = 0, \quad r = 0, 1.$$
 (4.7.17)

Ignoring the transient that dies out quickly and focusing attention to the long-time evolution, i.e., $t_1 = O(1)$, the solution at $O(\epsilon^0)$ is ¹

$$C_0 = C_0(x, t_1, t_2), (4.7.18)$$

¹Strictly speaking the solution is

$$C_0 = C_{00}(x, t_1, t_2) + \sum_{0}^{\infty} C_{0n}(x, t_1, t_2) e^{-(k'_n)^2 t} J_0(k'_n r)$$

where k'_n is the *n*-th root of $J'_0(ka) = 0$. The series terms die out quicky in $t \gg 1$ and $t_1 \ll 1$, leaving the limit C_{00} which is independent of t. (Dr. E. Qian, 1993)

At $O(\epsilon)$, let the known velocity be

$$u = U_s(y) + \Re \left(U_w(y) e^{-i\Omega t} \right)$$
(4.7.19)

then

$$\frac{\partial C_0}{\partial t_1} + \frac{\partial C_1}{\partial t} + Pe\left\{U_s + \Re\left[U(r)e^{-i\Omega t}\right]\right\}\frac{\partial C_0}{\partial x} = \frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial C_1}{\partial r}\right)$$
(4.7.20)

Denoting the period average by overbars,

$$\bar{f} = \frac{\Omega}{2\pi} \int_{t}^{t+2\pi/\Omega} f \, dt$$

and taking the period average,

$$\frac{\partial C_0}{\partial t_1} + PeU_s \frac{\partial C_0}{\partial x} = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial \bar{C}_1}{\partial r} \right)$$
(4.7.21)

with

$$\frac{\partial \bar{C}_1}{\partial r} = 0, \quad r = 0, 1 \tag{4.7.22}$$

Let us now integrate (or average) across the pipe, and get

$$\frac{\partial C_0}{\partial t_1} + Pe\langle U_s \rangle \frac{\partial C_0}{\partial x} = 0 \tag{4.7.23}$$

where angle brackets denote averaging over the cross section.

$$\langle h \rangle = \frac{1}{\pi} \int_0^1 2\pi r h \, dr$$

Now subtract (4.7.23) from (4.7.20)

$$\frac{\partial C_1}{\partial t} + Pe\left\{\tilde{U}_s + \Re\left[U_w e^{i\Omega t}\right]\right\} \frac{\partial C_0}{\partial x} = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial C_1}{\partial r}\right)$$
(4.7.24)

where

$$\tilde{U} = U_s(y) - \langle U_s \rangle \tag{4.7.25}$$

is the velocity nonuniformity

Now C_1 is governed by a linear equation, we can assume the solution to be proportional to the forcing and composed of a steady part and a time harmonic part, i.e.,

$$C_1 = Pe \frac{\partial C_0}{\partial x} \left\{ B_s(r) + \Re \left[B_w(r) e^{-i\Omega t} \right] \right\}$$
(4.7.26)

then

$$\frac{1}{r}\frac{d}{dr}\left(r\frac{dB_s}{dr}\right) = \tilde{U}(r) \tag{4.7.27}$$

4

and

$$\frac{1}{r}\frac{d}{dr}\left(r\frac{dB_w}{dr}\right) + i\Omega B_w = U_w(r) \tag{4.7.28}$$

with the boundary conditions

$$\frac{dB_s}{dr} = 0$$
 and $\frac{dB_w}{dr} = 0, r = 0, 1.$ (4.7.29)

After solving for B_s, B_w we go to $O(\epsilon^2)$, i.e., (4.7.16) :

$$\frac{\partial C_0}{\partial t_2} + \frac{\partial C_1}{\partial t_1} + \frac{\partial C_2}{\partial t}
+ Pe^2 \left\{ \langle U_s \rangle + \tilde{U}_s + \Re \left[U_w e^{-i\Omega t} \right] \right\} \left\{ B_s + \Re \left[B_w(y) e^{-i\Omega t} \right] \right\} \frac{\partial^2 C_0}{\partial x^2}
= \frac{\partial^2 C_0}{\partial x^2} + \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial C_2}{\partial r} \right)$$
(4.7.30)

which is a linear PDE for C_2 . From(4.7.26) and (4.7.23) we find

$$\frac{\partial C_1}{\partial t_1} = -Pe^2 \frac{\partial^2 C_0}{\partial x^2} \langle U_s \rangle \left\{ B_s(r) + \Re \left[B_w(r) e^{-i\Omega t} \right] \right\}$$
(4.7.31)

It follows that

$$\frac{\partial C_0}{\partial t_2} + \frac{\partial C_2}{\partial t} + Pe^2 \left\{ \tilde{U}_s + \Re \left[U_w e^{-i\Omega t} \right] \right\} \left\{ B_s + \Re \left[B_w(r) e^{-i\Omega t} \right] \right\} \frac{\partial^2 C_0}{\partial x^2} \\
= \frac{\partial^2 C_0}{\partial x^2} + \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial C_2}{\partial r} \right)$$
(4.7.32)

Taking the time average over a period,

$$\frac{\partial C_0}{\partial t_2} + Pe^2 \left\{ \tilde{U}_s B_s + \frac{1}{2} \Re \left[U_w B_w^* \right] \right\} \frac{\partial^2 C_0}{\partial x^2} = \frac{\partial^2 C_0}{\partial x^2} + \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial \bar{C}_2}{\partial r} \right)$$
(4.7.33)

with

$$\frac{\partial \bar{C}_2}{\partial r} = 0 \quad r = 0, 1 \tag{4.7.34}$$

Averaging (4.7.33) across the pipe, we get

$$\frac{\partial C_0}{\partial t_2} = E \frac{\partial^2 C_0}{\partial x^2} \tag{4.7.35}$$

with

$$E = 1 - Pe^2 \left\{ \langle \tilde{U}_s B_s \rangle + \frac{1}{2} \Re \langle U_w B_w^* \rangle \right\}$$
(4.7.36)

which is the effective diffusion coefficient or the dispersion coefficient. The first part is of molecular origin; the second part is due to fluid shear.

Finally we add (4.7.23) and (4.7.35) to get:

$$\left(\frac{\partial}{\partial t_1} + \epsilon \frac{\partial}{\partial t_2}\right) C_0 + Pe\langle U_s \rangle \frac{\partial C_0}{\partial x} = \epsilon E \frac{\partial^2 C_0}{\partial x^2}$$
(4.7.37)

This describes the convective diffusion of the area averaged concentration, which is certainly of practical value.

After the perturbation analysis is complete, there is no need to use multiple scales; we may now write

$$\frac{\partial C_0}{\partial t_1} + Pe\langle U_s \rangle \frac{\partial C_0}{\partial x} = \epsilon E \frac{\partial^2 C_0}{\partial x^2}$$
(4.7.38)

still in dimensionless form. This equation governs the convective diffusion of the crosssectional average, after the initial transient is smoothed out.

Homework: Find the dispersion coefficient E in the oscillatory flow in a circular pipe and carry out the necessary numerical calculations.

Homework (mini research) : Find the dispersion coefficient E in the oscillatory flow in a blood vessel with elastic wall.