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5.2 Kelvin-Helmholz Instability for continuous shear

and stratification

5.2.1 Heuristic reasoning

Due to viscosity, shear flow exists along the boundary of a jet, a wake or a plume . On the
interface of salt and fresh water, density stratification further comes into play. When will
dynamic instability occur?

Figure 5.2.1: Exchanging fluid parcels in a stratified shear flow

Refering to Figure 5.2.1, Consider two fluid parcels, each of unit volume, at levels z and
z +dz. Let their positions be interchanged. To overcome gravity, the force needed to lift the
heavier fluid parcel by η is

g [ρ(z) − ρ(z + η)] = −g
dρ

dz
η.

Work needed to lift the heavier parcel by dz is

−g
dρ

dz

∫ z+dz

z
ηdη = −1

2
dρ dz.

Similarly, the work needed to push the light parcel down by dz is − 1
2
gdρdz. Therefore the

total work needed is
−gdρ dz.

Before the exchange, the total kinetic energy is

1

2
ρ[U2 + (U + dU)2]
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where Boussinesq approximation is used. After the exchange, the parcels mix with the
surrounding fluid and attain the average velocity

(U + U + dU)/2 = U + dU/2

Therefore the total kinetic energy is

ρ(U + dU/2)2

The available kinetic energy is the difference between the kinetic energies before and after
the exchange.

ρ

2

{

U2 + (U + dU)2 − 2(U + dU/2)2
}

=
ρ

4
dU2.

If the net available kinetic energy exceeds the work needed for the exchange, the disturbance
will grow and the flow will become unstable, i.e.,

ρdU2

4
> −gdρdz

Let the Richardson number be defined by

Ri ≡
−g

ρ

dρ

dz
(

dU
dz

)2 (5.2.1)

Instabilty occurs if

1

4
> Ri ≡

−g

ρ

dρ

dz
(

dU
dz

)2 (5.2.2)

(Chandrasekar, 1961 ).
Remark: A slightly more accurate estimate can be made without Boussinesq approxima-

tion. Before the exchange, the total kinetic energy is

1

2

{

ρU2 + (ρ + dρ)(U + dU)2
}

.

After the exchange, the parcels mix with the surrounding fluid and attain the average velocity

(U + U + dU)/2 = U + dU/2

but their densities are preserved. Therefore the total kinetic energy is

1

2
(ρ + ρ + dρ)(U + dU/2)2

The available kinetic energy is the difference between the kinetic energies before and after
the exchange.

ρ

4
dU2 − UdUdρ +

1

4
dρdU2
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Ignoring the last term, the necessary condition for instability is

ρ

4
dU2 − UdUdρ +

1

4
dρdU2 > −gdρdz

or
1

4
−

1
ρ

dρ

dz

1
U

dU
dz

+
1

4

dρ

ρ
>

−g

ρ

dρ

dz
(

dU
dz

)2

On the left-hand side, the third term is negligible compared to the first. The ratioi of the
second term on the left to the term on the right is

U

g

dU

dz
∼ U2

gL

where L is the length scale of stratification. As long as the last ratio is very small, the
criterion Ri < 1/4 still holds.

Let us confirm the heuristic result but the linearize theory.

5.2.2 Linearized instability theory for continuous shear and strat-
ification.

Let the total flow field be (U +u, w, P +p, ρ̄+ ρ̃) where U, P, ρ̄ represent the backgraound flow
(u, w, p, ρ̃) the dynamical perturbations of infinitesimal magnitude. The linearized governing
equations are: continuity:

ux + wz = 0 (5.2.3)

incompressiblity:

ρ̃t + Uρ̃x + wρ′ = 0 (5.2.4)

where

ρ′ ≡ dρ

dz

and momentum conservation:

ρ (ut + Uux + wUz) = −px (5.2.5)

ρ (wt + Uwx) = −pz − ρ̃g. (5.2.6)

where ρ̃ denotes the perturbation of density from ρ̄.
Let us follow Miles and introduce a new unknown η by enoting ρ̃ = −ρ′η, then Eqn.

(5.2.4) gives
ηt + Uηx = w (5.2.7)

Consider
η = F (z)eik(x−ct), (5.2.8)
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where

c = ω/k = cr + ici.

For fixed k the flow is unstable if ci > 0, since

e−ikct = e−ikcrtekcit.

Let

{u, w, p, ρ̃} = {û(z), ŵ(z), p̂(z),−ρ′F (z)} eik(x−ct) (5.2.9)

We get from Eqn. (5.2.7)

ŵ = ik(U − c)F, , (5.2.10)

from Eqn. (5.2.3)

û = −[(U − c)F ]′, (5.2.11)

and from Eqn. (5.2.5)

ρ (ik(U − c)û + U ′[ik(U − c)F ]) = p̂ik

or

ρ[(U − c)(−)[(U − c)F ]′ + U ′(U − c)F ] = ρ̂,

hence

p̂ = ρ(U − c)2F ′. (5.2.12)

Substituting Eqns. (5.2.9), (5.2.10), (5.2.11) and (5.2.12) into Eqn. (5.2.6), we get

[

ρ(U − c)2F ′

]

′

+ ρ
[

N2 − k2(U − c)2
]

F = 0, (5.2.13)

where N is the Brunt-Väisälä frequency defined by

N2 = −g

ρ

dρ

dz
. (5.2.14)

Let the top and bottom be rigid walls, then w = 0. Hence,

η = 0 i.e., F = 0, z = 0, d. (5.2.15)

The argument is unchanged if the top and bottom are at z = ∞ and z = −∞. Equations
(5.2.13) and (5.2.15) consititute an eigenvalue problem where c = cr + ici is the eigenvalue.
If ci > 0, instability occurs.
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5.2.3 A necessary condition for instability (J.W. Miles, L. N.
Howard).

For brevity we set W = U − c. Miles further introduce G =
√

WF , so that Eqn. (5.2.13)
becomes

(ρWG′)
′ −

[

1

2
(ρU ′)

′

+ k2ρW +
ρ

W

(

1

4
U ′2 − N2

)]

G = 0. (5.2.16)

The boundary conditions are
G(0) = G(d) = 0. (5.2.17)

Multiplying Eqn. (5.2.16) by G∗ and integrating by parts

∫ d

0

{

ρW
(

| G′

1 |2 +k2 | G1 |2
)

+
1

2
(ρU ′)

′ |G|2 + ρ
(

1

4
U ′2 − N2

)

W ∗ | G

W
|2

}

dz = 0.

(5.2.18)
We now seek the necessary condition for instability, i.e., ci 6= 0. Writing

W = (U − cr) − ici W ∗ = (U − cr) + ici

and substituting these in (5.2.18), we get

∫ d

0

{

ρ(U − cr − ici)
(

| G′ |2 +k2 | G |2
)

+
1

2
(ρU ′)

′ |G|2 + ρ
(

1

4
U ′2 − N2

)

(U − cr + ici) |
G

W
|2

}

dz = 0.

Separating the imaginary part, we get, if ci 6= 0,

∫ d

0
ρ

(

(| G′ |2 +k2 | G |2
)

dz +
∫ d

0
ρ

(

gβ − 1

4
(U ′)2

)

| G

W
|2 dz = 0.

For this to be true it is necessary that N 2 < 1
4
(U ′)2 or

Ri =
N2

(U ′)2
=

−g

ρ̄

dρ̄

dz
(

dU
dz

)2 <
1

4
. (5.2.19)

This confirms the heurisic result as the necessary (but not sufficient) condition for instabililty
(J.W. Miles, L. N. Howard).


