Lecture Notes on Fluid Dynamics
(1.63J/2.21J)
by Chiang C. Mei, 2002

6.5 Geothermal Plume

6-5g-plume-L.tex
R..A.Wooding, (1963), J Fluid Mech. 15, 527-544.
C. S. Yih, (1965), Dynamics of Nonhomogeneous Fluids, Macmillan.
D. A. Nield and A. Bejan, (1992), Convection in Porous Media. Springer-Verlag.

Consider a steady, two dimensional plume due to a source of intense heat in a porous medium. From Darcy's law:

$$
\begin{equation*}
\frac{\mu}{k} u=-\frac{\partial p}{\partial x} \tag{6.5.1}
\end{equation*}
$$

where k denotes the permeability, and

$$
\begin{equation*}
\frac{\mu}{k} w=-\frac{\partial p}{\partial z}-\rho g \tag{6.5.2}
\end{equation*}
$$

These are the momentum equations for slow motion in porous medium. Mass conservation requires

$$
\begin{equation*}
u_{x}+w_{z}=0 \tag{6.5.3}
\end{equation*}
$$

Energy conservation requires

$$
\begin{equation*}
u \frac{\partial T}{\partial x}+w \frac{\partial T}{\partial z}=\alpha\left(\frac{\partial^{2} T}{\partial x^{2}}+\frac{\partial^{2} T}{\partial z^{2}}\right) \tag{6.5.4}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha=\frac{K}{\rho_{0} C} \tag{6.5.5}
\end{equation*}
$$

denotes the thermal difusivity.
Equation of state:

$$
\begin{equation*}
\rho=\rho_{0}\left(1-\beta\left(T-T_{0}\right)\right) \tag{6.5.6}
\end{equation*}
$$

Consider th flow induced by a strong heat source. Let

$$
T-T_{0}=T^{\prime}, \quad p=p_{o}+p^{\prime}
$$

where p_{0} is the hydrostatic pressure satisfying

$$
-\frac{\partial p_{0}}{\partial z}-\rho_{0} g=0
$$

Eqn. (6.5.2) can be written

$$
\begin{equation*}
\frac{\mu}{k} w=-\frac{\partial p^{\prime}}{\partial z}+g \rho_{0} \beta T^{\prime} \tag{6.5.7}
\end{equation*}
$$

6.5.1 Boundary layer approximation

Eliminating p^{\prime} from Eqns. (6.5.7) and (6.5.1), we get

$$
\frac{\mu}{k}\left(w_{x}-u_{z}\right)=g \rho_{0} \beta T_{x}^{\prime} .
$$

Let ψ be the stream funciton such that

$$
u=\psi_{z}, \quad w=-\psi_{x}
$$

then

$$
\begin{equation*}
\psi_{x x}+\psi_{z z}=-\frac{g \rho_{0} \beta k}{\mu} T_{x}^{\prime} \tag{6.5.8}
\end{equation*}
$$

For an intense heat source, we expect the plume to be narrow and tall. Let us apply the boundary layer approximation and check its realm of validity later,

$$
u \ll w, \quad \frac{\partial}{\partial x} \gg \frac{\partial}{\partial z} .
$$

hence

$$
\psi_{x x} \cong-\frac{\rho_{0} \beta k}{\mu} T_{x}^{\prime}
$$

or

$$
\begin{equation*}
\psi_{x} \cong-\frac{g \rho_{0} \beta k}{\mu} T^{\prime}, \tag{6.5.9}
\end{equation*}
$$

which is the same as ignoring $\partial p^{\prime} / \partial z$ in Eqn. (6.5.7).
This can be confirmed since $u \ll w \partial p^{\prime} / \partial x \approx 0, p^{\prime}$ inside the plume is the same as that outside the plume. But

$$
\frac{\partial p^{\prime}}{\partial z}=0
$$

outside the plume, hence $\partial p^{\prime} / \partial z \approx 0$ inside as well.
Applying the B.L. approximation to Eqn. (6.5.4)

$$
\begin{equation*}
u T_{x}^{\prime}+w T_{z}^{\prime}=\alpha T_{x x}^{\prime} \tag{6.5.10}
\end{equation*}
$$

Using the continuity equation we get

$$
\left(u T^{\prime}\right)_{x}+\left(w T^{\prime}\right)_{z}=\alpha T_{x x}^{\prime} .
$$

Integrating across the plume,

$$
\begin{equation*}
\frac{\partial}{\partial z} \int_{-\infty}^{\infty} w T^{\prime} d x=0 \tag{6.5.11}
\end{equation*}
$$

since $T^{\prime}=0$ outside the plume. It follows that

$$
\begin{equation*}
\rho_{o} C \int_{-\infty}^{\infty} w T^{\prime} d x=-\rho_{0} C \int_{-\infty}^{\infty} \psi_{x} T^{\prime} d x=Q=\text { constant } \tag{6.5.12}
\end{equation*}
$$

6.5.2 Normalization

Let us take

$$
\begin{equation*}
x=B \bar{x}, \quad z=H \bar{z}, \quad u=\frac{W B}{H} \bar{u}, \quad w=W \bar{w}, \quad T^{\prime} \rightarrow \Delta T \theta \tag{6.5.13}
\end{equation*}
$$

where $H, B, \Delta T$ and W are to be determined to get maximun simplicity. We then get from the momentum equation,

$$
\bar{w}=\bar{\psi}_{\bar{x}}=-\frac{g \rho_{0} \beta \Delta T}{\mu W} \theta,
$$

from the energy equation,

$$
\bar{u} \theta_{\bar{x}}+\bar{w} \theta_{\bar{z}}=\frac{\alpha H}{W B^{2}} \theta_{\bar{x} \bar{x} \bar{x}}
$$

and from the total flux condition,

$$
\rho_{0} C W B \Delta \int_{-\infty}^{\infty} \bar{w} \theta d \bar{x}=Q
$$

Let us choose

$$
\begin{gather*}
\frac{g \rho_{0} \beta \Delta T}{\mu W}=1 \tag{6.5.14}\\
\frac{\alpha H}{W B^{2}}=1 \tag{6.5.15}
\end{gather*}
$$

and

$$
\begin{equation*}
\rho_{0} C W B \Delta T=Q, \tag{6.5.16}
\end{equation*}
$$

which gives three relations among four scales, $B, H, W, \Delta T$. Then

$$
\begin{equation*}
\bar{w}=\bar{\psi}_{\bar{x}}=-\theta, \tag{6.5.17}
\end{equation*}
$$

from the energy equation,

$$
\begin{equation*}
\bar{u} \theta_{\bar{x}}+\bar{w} \theta_{\bar{z}}=\theta_{\bar{x} \bar{x}} \tag{6.5.18}
\end{equation*}
$$

and from the total flux condition,

$$
\begin{equation*}
\int_{-\infty}^{\infty} \bar{w} \theta d \bar{x}=1 \tag{6.5.19}
\end{equation*}
$$

In addition we require that

$$
\begin{align*}
& w(\pm \infty, z)=0, \quad \theta(\pm \infty, z)=0 \tag{6.5.20}\\
& u(0, z)=\frac{\partial w(0, z)}{\partial x}=0, \quad x=0 \tag{6.5.21}
\end{align*}
$$

From here on we omit overhead bars in all dimensionless equations for brevity.

6.5.3 Similarity solution

Now let

$$
x=\lambda^{a} x^{*} \quad z=\lambda^{b} z^{*} \quad \psi=\lambda^{c} \psi^{*} \quad \theta=\lambda^{d} \theta^{*} .
$$

From Eqn. (6.5.17)

$$
\lambda^{c-a}\left(\frac{\partial \psi^{*}}{\partial x^{*}}\right)=-\lambda^{d} \theta^{*}
$$

For invariance we require,

$$
\begin{equation*}
c-a=d . \tag{6.5.22}
\end{equation*}
$$

From (6.5.19)

$$
-\int \frac{\partial \psi^{*}}{\partial x^{*}} d x^{*} \lambda^{c-a+a+d}=1
$$

therefore,

$$
\begin{equation*}
a+d=0 . \tag{6.5.23}
\end{equation*}
$$

From Eqn. (6.5.18)

$$
\lambda^{c+d-a-b}=\lambda^{d-2 a} .
$$

implying,

$$
\begin{equation*}
c+a-b=0 . \tag{6.5.24}
\end{equation*}
$$

Finally

$$
c=\frac{a}{2}, \quad d=-\frac{a}{2}, \quad b=\frac{3}{2} a .
$$

In view of these we introduce the following similarity variables,

$$
\begin{equation*}
\eta=\frac{x}{z^{2 / 3}}, \quad \psi=z^{1 / 3} f(\eta), \quad \theta=z^{-1 / 3} h(\eta) . \tag{6.5.25}
\end{equation*}
$$

Note that at the center line $\eta=0$

$$
\begin{gather*}
w=-\psi_{x} \propto z^{1 / 3} f^{\prime}(0)(-) z^{-2 / 3} \sim z^{-1 / 3} f^{\prime}(0) \sim z^{-1 / 3} \tag{6.5.26}\\
\theta \propto z^{-1 / 3} h(0) \tag{6.5.27}
\end{gather*}
$$

and

$$
\begin{equation*}
b \propto z^{2 / 3} \tag{6.5.28}
\end{equation*}
$$

Thus the velocity and temperature along the centerline decay as $z^{-1 / 3}$ and the plume width grows as $z^{2 / 3}$.

Substituting these into Eqns. (6.5.17) and (6.5.18), we get, after some algebra

$$
\begin{equation*}
-\frac{d f}{d \eta}=h \tag{6.5.29}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{d}{d \eta}(f h)=3 \frac{d^{2} h}{d \eta^{2}} \tag{6.5.30}
\end{equation*}
$$

The boundary conditions are,

$$
\begin{aligned}
f & =0 \quad(\psi=0) \\
f^{\prime \prime}(0) & =0, \quad\left(w(0, z)=w_{\max }\right) \\
f(\pm \infty), f^{\prime}(\pm \infty) & =0 \\
h(\pm \infty) & =0 .
\end{aligned}
$$

Integrating Eqn. (6.5.30), we get

$$
f h=3 h^{\prime} .
$$

Using Eqn. (6.5.29), we get

$$
f f^{\prime}=3 f^{\prime \prime}
$$

Integrating again, we get

$$
-6 f^{\prime}=f_{0}^{2}-f^{2}
$$

where $f_{0}=f_{\text {max }}$. Let $f=-f_{0} F$, then

$$
f_{0}\left(1-F^{2}\right)=6 F^{\prime}, \text { or } \frac{d F}{1-F^{2}}=\frac{f_{0} d \eta}{6}
$$

which can be integrated to give

$$
\frac{f_{0} \eta}{6}=\frac{1}{2} \ln \frac{1+F}{1-F}
$$

Thus

$$
\left(\frac{1+F}{1-F}\right)^{1 / 2}=e^{f_{0} \eta / 6}
$$

or

$$
\left(\frac{1+F}{1-F}\right)=e^{f_{0} \eta / 3}
$$

Solving for F, we get

$$
\begin{equation*}
F=\frac{e^{f_{0} / 3}-1}{e^{f_{0} / 3}+1}=\tanh \frac{f_{0} \eta}{6} \tag{6.5.31}
\end{equation*}
$$

What is f_{0} ? Let us use Eqn. (6.5.29)

$$
-\int_{-\infty}^{\infty} \frac{d f}{d \eta} h d \eta=\int_{-\infty}^{\infty}\left(f^{\prime}\right)^{2} d \eta=1
$$

since

$$
f^{\prime}=-f_{0} F^{\prime}=-\frac{f_{0}^{2}}{6} \operatorname{sech}^{2} \frac{f_{0} \eta}{6}
$$

and

$$
h=-f^{\prime} .
$$

Therefore,

$$
\left(\frac{f_{0}^{2}}{6}\right)^{2} \int_{-\infty}^{\infty} \operatorname{sech}^{4}\left(\frac{f_{0} \eta}{6}\right) d \eta=\frac{f_{0}^{3}}{6} \int_{-\infty}^{\infty} \operatorname{sech}^{4} \zeta d \zeta=1
$$

Since

$$
\int_{-\infty}^{\infty} \operatorname{sech}^{4} z d z=4 / 3
$$

we get f_{0} !

$$
\begin{equation*}
f_{0}=\left(\frac{9}{2}\right)^{1 / 3} \tag{6.5.32}
\end{equation*}
$$

The solution is

$$
\begin{equation*}
f=\left(\frac{9}{2}\right)^{1 / 3} \tanh \left(\frac{9}{2}\right)^{1 / 3} \frac{\eta}{6} \tag{6.5.33}
\end{equation*}
$$

and

$$
\begin{equation*}
h=-f^{\prime}=-\left(\frac{9}{2}\right)^{2 / 3} \operatorname{sech}^{2}\left(\frac{9}{2}\right)^{1 / 3} \frac{\eta}{6} \tag{6.5.34}
\end{equation*}
$$

Computed results are given in Figures.
RemarkChecking the boundary layer approximation.

$$
\begin{array}{cc}
\frac{\partial^{2} \psi}{\partial x^{2}} \sim z^{-1}, & \frac{\partial^{2} \psi}{\partial z^{2}} \sim z^{-5 / 3} \\
\frac{\partial^{2} T^{\prime}}{\partial x^{2}} \sim z^{-5 / 3}, & \frac{\partial^{2} T^{\prime}}{\partial z^{2}} \sim z^{-7 / 3}
\end{array}
$$

hence for large $z, \mathrm{~B} . \mathrm{L}$. approximation is good.

6.5.4 Return to physcial coordinates

Start from

$$
\begin{gather*}
\eta=\frac{\bar{x}}{\bar{z}^{2 / 3}} \tag{6.5.35}\\
\frac{\bar{\psi}}{\bar{z}^{1 / 3}}=f(\eta) \tag{6.5.36}\\
\bar{z}^{1 / 3} \theta=h(\eta) \tag{6.5.37}
\end{gather*}
$$

Then

$$
\begin{equation*}
\eta=\frac{x / B}{(z / H)^{2 / 3}}=\left(\frac{H^{2 / 3}}{B}\right)\left(\frac{x}{z^{2 / 3}}\right) \tag{6.5.38}
\end{equation*}
$$

By eliminating H and ΔT from(6.5.35) and (6.5.37), we get

$$
W=\sqrt{\frac{Q g \beta}{C B}}
$$

Figure 6.5.1: Theoretical solution for a geothermal plume due to Yih.
(Adapted from Yih, Dynamics of Nonhomogeneous Fluids, 1965).

From (6.5.36), we get

$$
\frac{H}{B^{2}}=\frac{W}{\alpha}=\frac{1}{\alpha} \sqrt{\frac{Q g \beta}{C B}}
$$

It follows that

$$
\begin{equation*}
\frac{H}{B^{3 / 2}}=\frac{1}{\alpha} \sqrt{\frac{Q g \beta}{C}} \tag{6.5.39}
\end{equation*}
$$

Now

$$
\begin{equation*}
\frac{\bar{\psi}}{\bar{z}^{1 / 3}}=\frac{\psi}{W B}\left(\frac{z}{H}\right)^{-1 / 3}=\left(\frac{H^{1 / 3}}{W B}\right)\left(\frac{\psi}{z^{1 / 3}}\right) \tag{6.5.40}
\end{equation*}
$$

It can be shown that

$$
\frac{H^{1 / 3}}{W B}=\frac{1}{\sqrt{\frac{Q g \beta}{C}}}\left(\frac{H}{B^{3 / 2}}\right)^{1 / 3}=\frac{1}{\alpha^{1 / 3}}\left(\frac{C}{Q g \beta}\right)^{1 / 3}
$$

which depends on the fluid properties and the given heat source strength.
Also

$$
\begin{equation*}
\bar{z}^{1 / 3} \theta=h(\eta)=(H z)^{1 / 3} \Delta T T^{\prime \prime}=\left(H^{1 / 3} \Delta T\right) z^{1 / 3} T^{\prime} \tag{6.5.41}
\end{equation*}
$$

We can show that

$$
\begin{equation*}
H^{1 / 3} \Delta T=\frac{1}{\nu} \frac{1}{\sqrt{g \beta C}}\left(\frac{1}{\alpha} \sqrt{\frac{Q g \beta}{C}}\right)^{1 / 3}=\frac{Q^{1 / 6}}{\nu(\alpha g \beta)^{1 / 3} C^{2 / 3}} \tag{6.5.42}
\end{equation*}
$$

which also depends on the fluid properties and the given heat source strength.

