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Consider a steady, two dimensional plume due to a source of intense heat in a porous
medium. From Darcy’s law:

µ

k
u = −∂p

∂x
(6.5.1)

where k denotes the permeability, and

µ

k
w = −∂p

∂z
− ρg (6.5.2)

These are the momentum equations for slow motion in porous medium. Mass conservation
requires

ux + wz = 0 (6.5.3)

Energy conservation requires

u
∂T

∂x
+ w

∂T

∂z
= α

(
∂2T

∂x2
+
∂2T

∂z2

)
(6.5.4)

where

α =
K

ρ0C
(6.5.5)

denotes the thermal difusivity.
Equation of state:

ρ = ρ0 (1 − β(T − T0)) (6.5.6)

Consider th flow induced by a strong heat source. Let

T − T0 = T ′, p = po + p′

where p0 is the hydrostatic pressure satisfying

−∂p0

∂z
− ρ0g = 0.

Eqn. (6.5.2) can be written
µ

k
w = −∂p

′

∂z
+ gρ0βT

′. (6.5.7)
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6.5.1 Boundary layer approximation

Eliminating p′ from Eqns. (6.5.7) and (6.5.1), we get

µ

k
(wx − uz) = gρ0βT

′
x.

Let ψ be the stream funciton such that

u = ψz, w = −ψx

then

ψxx + ψzz = −gρ0βk

µ
T ′

x (6.5.8)

For an intense heat source, we expect the plume to be narrow and tall. Let us apply the
boundary layer approximation and check its realm of validity later,

u� w,
∂

∂x
� ∂

∂z
.

hence

ψxx
∼= −ρ0βk

µ
T ′

x

or

ψx
∼= −gρ0βk

µ
T ′, (6.5.9)

which is the same as ignoring ∂p′/∂z in Eqn. (6.5.7).
This can be confirmed since u � w ∂p′/∂x ≈ 0, p′ inside the plume is the same as that

outside the plume. But
∂p′

∂z
= 0

outside the plume, hence ∂p′/∂z ≈ 0 inside as well.
Applying the B.L. approximation to Eqn. (6.5.4)

uT ′
x + wT ′

z = αT ′
xx (6.5.10)

Using the continuity equation we get

(uT ′)x + (wT ′)z = αT ′
xx.

Integrating across the plume,
∂

∂z

∫ ∞

−∞
wT ′ dx = 0 (6.5.11)

since T ′ = 0 outside the plume. It follows that

ρoC

∫ ∞

−∞
wT ′ dx = −ρ0C

∫ ∞

−∞
ψx T

′ dx = Q = constant. (6.5.12)
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6.5.2 Normalization

Let us take

x = Bx̄, z = Hz̄, u =
WB

H
ū, w = Ww̄, T ′ → ∆Tθ (6.5.13)

where H,B,∆T and W are to be determined to get maximun simplicity. We then get from
the momentum equation,

w̄ = ψ̄x̄ = −gρ0β∆T

µW
θ,

from the energy equation,

ūθx̄ + w̄θz̄ =
αH

WB2
θx̄x̄,

and from the total flux condition,

ρ0CWB∆

∫ ∞

−∞
w̄θdx̄ = Q

Let us choose
gρ0β∆T

µW
= 1 (6.5.14)

αH

WB2
= 1 (6.5.15)

and

ρ0CWB∆T = Q, (6.5.16)

which gives three relations among four scales, B,H,W,∆T . Then

w̄ = ψ̄x̄ = −θ, (6.5.17)

from the energy equation,

ūθx̄ + w̄θz̄ = θx̄x̄, (6.5.18)

and from the total flux condition, ∫ ∞

−∞
w̄θdx̄ = 1 (6.5.19)

In addition we require that

w(±∞, z) = 0, θ(±∞, z) = 0 (6.5.20)

u(0, z) =
∂w(0, z)

∂x
= 0, x = 0. (6.5.21)

From here on we omit overhead bars in all dimensionless equations for brevity.
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6.5.3 Similarity solution

Now let
x = λax∗ z = λbz∗ ψ = λcψ∗ θ = λdθ∗.

From Eqn. (6.5.17)

λc−a

(
∂ψ∗

∂x∗

)
= −λdθ∗.

For invariance we require,
c− a = d. (6.5.22)

From (6.5.19)

−
∫

∂ψ∗

∂x∗
dx∗ λc−a+a+d = 1.

therefore,
a+ d = 0. (6.5.23)

From Eqn. (6.5.18)
λc+d−a−b = λd−2a.

implying,
c+ a− b = 0. (6.5.24)

Finally

c =
a

2
, d = −a

2
, b =

3

2
a.

In view of these we introduce the following similarity variables,

η =
x

z2/3
, ψ = z1/3f(η), θ = z−1/3 h(η). (6.5.25)

Note that at the center line η = 0

w = −ψx ∝ z1/3f ′(0)(−)z−2/3 ∼ z−1/3f ′(0) ∼ z−1/3 (6.5.26)

θ ∝ z−1/3h(0) (6.5.27)

and
b ∝ z2/3 (6.5.28)

Thus the velocity and temperature along the centerline decay as z−1/3 and the plume width
grows as z2/3.

Substituting these into Eqns. (6.5.17) and (6.5.18), we get, after some algebra

−df

dη
= h (6.5.29)

and
d

dη
(fh) = 3

d2h

dη2
. (6.5.30)
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The boundary conditions are,

f = 0 (ψ = 0)

f ′′(0) = 0, (w(0, z) = wmax)

f(±∞), f ′(±∞) = 0

h(±∞) = 0.

Integrating Eqn. (6.5.30), we get

fh = 3h′.

Using Eqn. (6.5.29), we get

ff ′ = 3f ′′.

Integrating again, we get

−6f ′ = f 2
0 − f 2

where f0 = fmax. Let f = −f0F , then

f0(1 − F 2) = 6F ′, or
dF

1 − F 2
=
f0dη

6

which can be integrated to give
f0η

6
=

1

2
ln

1 + F

1 − F

Thus (
1 + F

1 − F

)1/2

= ef0η/6

or (
1 + F

1 − F

)
= ef0η/3

Solving for F , we get

F =
ef0/3 − 1

ef0/3 + 1
= tanh

f0η

6
(6.5.31)

What is f0? Let us use Eqn. (6.5.29)

−
∫ ∞

−∞

df

dη
h dη =

∫ ∞

−∞
(f ′)2dη = 1

since

f ′ = −f0F
′ = −f

2
0

6
sech2f0η

6

and

h = −f ′.
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Therefore, (
f 2

0

6

)2 ∫ ∞

−∞
sech4

(
f0η

6

)
dη =

f 3
0

6

∫ ∞

−∞
sech4ζdζ = 1.

Since ∫ ∞

−∞
sech4zdz = 4/3.

we get f0!

f0 =

(
9

2

)1/3

(6.5.32)

The solution is

f =

(
9

2

)1/3

tanh

(
9

2

)1/3
η

6
(6.5.33)

and

h = −f ′ = −
(

9

2

)2/3

sech2

(
9

2

)1/3
η

6
(6.5.34)

Computed results are given in Figures.
RemarkChecking the boundary layer approximation.

∂2ψ

∂x2
∼ z−1,

∂2ψ

∂z2
∼ z−5/3

∂2T ′

∂x2
∼ z−5/3,

∂2T ′

∂z2
∼ z−7/3

hence for large z, B. L. approximation is good.

6.5.4 Return to physcial coordinates

Start from

η =
x̄

z̄2/3
(6.5.35)

ψ̄

z̄1/3
= f(η) (6.5.36)

z̄1/3θ = h(η) (6.5.37)

Then

η =
x/B

(z/H)2/3
=

(
H2/3

B

)( x

z2/3

)
(6.5.38)

By eliminating H and ∆T from(6.5.35) and (6.5.37), we get

W =

√
Qgβ

CB
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From (6.5.36), we get

H

B2
=
W

α
=

1

α

√
Qgβ

CB

It follows that

H

B3/2
=

1

α

√
Qgβ

C
(6.5.39)

Now

ψ̄

z̄1/3
=

ψ

WB

( z
H

)−1/3

=

(
H1/3

WB

)(
ψ

z1/3

)
(6.5.40)
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It can be shown that

H1/3

WB
=

1√
Qgβ
C

(
H

B3/2

)1/3

=
1

α1/3

(
C

Qgβ

)1/3

which depends on the fluid properties and the given heat source strength.
Also

z̄1/3θ = h(η) = (Hz)1/3∆TT” = (H1/3∆T )z1/3T ′ (6.5.41)

We can show that

H1/3∆T =
1

ν

1√
gβC

(
1

α

√
Qgβ

C

)1/3

=
Q1/6

ν(αgβ)1/3C2/3
(6.5.42)

farnaz
which also depends on the fluid properties and the given heat source strength.




