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6.6 Rayleigh-Darcy (or Horton-Rogers-Lapwood) in-

stability in a porous layer

6-6-Lapwood.tex
Nield & Bejan, Chapter 6 Convection in Porous Media

Related: Rayleigh-Bernard Problem (Chandrsekhar, Chapter II, Hydrodynamic and Hy-
dromagnetic Stability)

If a layer of viscous fluid is heated from below, instability can occur and leads to convec-
tion cells important in meteorology. (Rayleigh-Benard Problem).
If a saturated porous layer is heated from below, similar instabilily and convection can occur.
This is of basic interest to geothermal convection and is relevant to the complex problem of
heat transport due to the burial of nuclear waste in mountains or in a seabed.

To give some visual ideas of what can happen in porous media, we shall borrow some
photographic evidence for the mathematically similar Rayleigh-Benard problem of a pure
fluid layer heated form below.

Figure 6.6.1: A saturated porus medium in geothermal gradient
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hence

pS = po − ρog

{
Toz +

β∆T

2

(
z2

h
− 2z

)}
(6.6.2)

Consider the perturbed state of small disturbances:

u = 0 + u′, T = TS + T ′, P = pS + p′ (6.6.3)

then

∇ · u′ = 0 (6.6.4)

0 = −∇p′ − µ

k
u′ + βgρoT

′k (6.6.5)

(ρC)m
∂T ′

∂t
+ (ρC)fu

′ · ∇TS = Km∇2T ′ (6.6.6)

6.6.1 Non-dimensionalization

. Let Km, κm = Km/(ρC)f be the conductivity and diffusivity of the mixture, and k the
permeability. Define

(x, y, z) → h(x∗, y∗, z∗), t → σh2

κm
t∗,

u′ → κm

h
u∗, T ′ = ∆Tθ, p′ → µκm

k
p∗ (6.6.7)

Then, after omitting ∗ for brevity, we get

∇ · u = 0 (6.6.8)

0 = −∇p − u + Ra θk (6.6.9)

∂θ

∂t
− w = ∇2θ (6.6.10)

where

Ra =
ρfgkβ∆Th

µκm
Rayleigh number in a porous medium (6.6.11)

is the Rayleigh number (ratio of buoyancy force to diffusive resistence) of the porous medium.
In Benard’s problem, Rayleigh number is defined as

Ra =
ρg∆Th4

µκ
, Rayleigh number in a pure fluid (6.6.12)

Sometimes one calls

D =
k

h2
, Darcy number (6.6.13)
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Darcy number so that Rayleigh number of a porous medium is the product of the traditional
Rayleigh number and Darcy number.

Taking the curl of (6.6.9),

∇× u = Ra(iθy − jθx) (6.6.14)

Note that the z compoent of the vorticity vector is zero.
Taking the curl again and using

∇×∇× u = ∇(∇ · u) −∇2u

we get

∇2u = −Ra [iθxz + jθyz − k(θxx + θyy)]

Taking the z component, we get

∇2w = Ra∇2
Hθ (6.6.15)

where

∇2
H =

∂2

∂x2
+

∂2

∂y2
(6.6.16)

is the horizontal Laplacian.
Equations (6.6.10) and (6.6.15) couple the two unknowns w and θ. The boundary con-

ditions are

w = θ = 0, z = 0, 1 (6.6.17)

After they are solved the other velocity components and pressure can be found.

6.6.2 Solution for sinusoidal disturbances

Let

(w, θ) = (W (z), Θ(z)) exp(ilx + imy − iωt) (6.6.18)

and

D =
d

dz

then from (6.6.10),

−iωΘ − W = (D2 − a2)Θ (6.6.19)

and from (6.6.15)

(D2 − a2)W = −a2RaΘ (6.6.20)

where

a2 = �2 + m2 (6.6.21)

The boundary conditions are :

W = Θ = 0, z = 0, 1 (6.6.22)
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Because the equations and the boundary conditons are homogeneous, the problem for W
and θ is an eigenvalue problem.

Note that l, m, a are related to dimensional wave numbers by

l = kxh =
2πh

Lx

, m = kyh =
2πh

Ly

, a = kh = 2πh

(
1

L2
x

+
1

L2
y

)1/2

with k =
√

k2
x + k2

y

(6.6.23)

6.6.3 Principle of exchange of stabilities

We shall first show that ω must be purely imaginary. Multiplying (6.6.20) by W ∗ and
integrating from z = 0 to z = 1, we get, after partial integration and using the boundary
conditions,

−
∫ 1

0

(|DW |2 + a2|W |2)dz = −a2Ra

∫ 1

0

W ∗Θdz (6.6.24)

Similarly we multipy (6.6.19) by Θ∗ and integrating from z = 0 to z = 1, and get

−
∫ 1

0

(|DΘ|2 + a2|Θ|2)dz = −iω

∫
|Θ|2dz −

∫ 1

0

WΘ∗dz (6.6.25)

Taking the complex conjugate of the second equation

−
∫ 1

0

(|DΘ|2 + a2|Θ|2)dz = iω∗
∫

|Θ|2dz −
∫ 1

0

W ∗Θdz (6.6.26)

Eqs (6.6.24) and (6.6.26) can be combined by eliminating the cross product terms, ,

−
∫ 1

0

(|DΘ|2 + a2|Θ|2)dz = −iω∗
∫

|Θ|2dz − 1

a2Ra

∫ 1

0

(|DW |2 + a2|W |2)dz (6.6.27)

Since all integrals above are real, −iω∗ = −ωi − iωr must also be real. We conclude that

ωr = 0, hence − iω = −ωi (6.6.28)

Marginal stability (the threshold of instability) occurs at ωr = ωi = 0. If ωi > 0, the
static state is unstable; ωi = 0, marginally stable; if ωi < 0, stable. A problem where the
eigenfrequency is real so that marginal instabililty occurs when ω = 0 is said to obey the
principle of exchange of stabilities.

6.6.4 Solution to eigenvalue problem

Consider the situation at marginal stability : ω = 0,

(D2 − a2)W = −a2RaΘ (6.6.29)
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−W = (D2 − a2)Θ (6.6.30)

Eliminating Θ, we get
(D2 − a2)2W = a2RaW (6.6.31)

subject to
W = 0, D2W = 0, z = 0, 1 (6.6.32)

Expanding (6.6.31)
D4W − 2a2D2W + a4W = a2RaW (6.6.33)

Clearly D4W = 0 on z = 0, 1. Differentiating (6.6.33) twice we see that D6 = 0 on z = 0, 1.
Repeating the process we find

D(2m) = 0, m = 1, 2, 3, · · · , on z = 0, 1 (6.6.34)

Therefore the eigensolution must be

W ∼ sin jπz (6.6.35)

To satisfy (6.6.31) it is necessary that

Ra =
[j2π2 + a2]2

a2
, for j = 1, 2, 3..., (6.6.36)

which is the eigenvalue condition. For any j, Ra becomes unbounded for both a2 → 0 and
a2 → ∞ and is curve concave upward in the plane of a2(abscissa) vs, Ra (ordinate).

The lowest threshold occurs at j = 1, and

∂Ra

∂a2
= 0

i.e.,
a2 = π2 (6.6.37)

or
Rac = 4π2 = 39.48 (6.6.38)

6.6.5 Possible convection patterns

This is similar to Benard’s problem which has been exhaustively studied theoretically and
experimentally. There are many possibilities. Let us consider the lowest mode only with
j = 1.

2-Dimensinal Rolls : (� = π, m = 0)
Take

w = cos πx sin πz (6.6.39)

then from mass conservation,
u = − sin πx cos πz (6.6.40)
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The dimensionless wavelength is Lx = Ly = 2. Along lines x = 0,±n, n = 1, 2, 3, 4, ..., u = 0
but w �= 0. Along x = 0,±2m, w > 0, hence fluid rises vertically. Along x = ±2m − 1,
w < 0 hence fluids sinks vertically. Along z = 0 and 1, w = 0. On the bottom (z = 0), u > 0
while on the top (z = 1), if 0 < x < 1, 2 < x < 3, 4 < x < 5, ... . The streamlines are shown
in Figure 6.6.2.

Figure 6.6.2: Rolls in a period

Rectangular cells: (� = m = π/
√

2).

w = cos
πx√

2
cos

πy√
2

sin πz (6.6.41)

From the z component of the vorticity equation (6.6.14),

∂v

∂x
− ∂u

∂y
= 0 (6.6.42)
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and from continuity
∂u

∂x
+

∂v

∂y
= −∂w

∂z
(6.6.43)

By cross differentiation, we get

∂2u

∂x2
+

∂2u

∂y2
= − ∂2w

∂z∂y
=

π2

2
√

2
sin

πx√
2

cos
πy√

2
cos πz (6.6.44)

and
∂2v

∂x2
+

∂2v

∂y2
= − ∂2w

∂z∂x
=

π2

2
√

2
cos

πx√
2

sin
πy√

2
cos πz (6.6.45)

These are easily solved to give

u = − 1√
2

sin
πx√

2
cos

πy√
2

cos πz (6.6.46)

and

v = − 1√
2

cos
πx√

2
sin

πy√
2

cos πz (6.6.47)

The streamlines in a horizontal plane is shown in Figure 6.6.4.
Hexagonal cells: See Chandrasekhar.
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