
1

Lecture Notes on Fluid Dynamics
(1.63J/2.21J)

by Chiang C. Mei, 2002

6-7double-diff.tex

6.7 Thermohaline instability in a porous layer

-doubly-diffusive instability
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In Salton Sea geothermal field of Imperial Valley, California, the temperature in the hotwater
reservoir can be 360◦C. Salinity in groundwater is as high as 2.5 × 105 ppm. Due to sharp
contrast of thermal and salt diffusivities (κT ∼ 1.5 × 10−7m2/s, κS ∼ 1.5 × 10−9m2/s),
convection can result from instability. This is called thermohaline convection.

A very similar mechanism was discovered earlier in oceanography, by Melvin Stern (1960).
This is another example where essentially the same physics arises in vastly different contexts.

6.7.1 Heuristic picture

Monotone instability
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Consider a fluid lighter at the top and denser at the bottom, with T and C shown in
Figure 6.7.1. so that dT/dz, dC/dz > 0.

Figure 6.7.1: Salinity and temperature profiles favoring monotonic instability in a porous
medium

Let a fluid parcel rise from z to z + ∆z. Because the thermal diffusivity κm is much
greater than the mass difffusivity of salt, κs, the rising water parcel absorbs heat much more
quickly than it absorbs salt. Hence, it can becomes lighter than the surrounding fluid and
continue to rise. If a fluid parcel drops by ∆z, the faster heat loss can make it heavier than
its sourounding fluid and sinking continues. Thus the fluid system can be unstable.

Oscillatory instability Consider a cold and fresh water lying over a warm and salty water.
Assume that the the fluid density decreases with height. The profiles of T and C are shown
in figure 6.7.2 so that dT/dz, dC/dz < 0. A lighter fluid parcel accidentally moved up by ∆z

Figure 6.7.2: Salinity and temperature profiles favoring oscillatory instability in a porous
medium

will cool off quickly while losing little salt. Hence, it will come down, resulting in oscillations.

We shall describe the mathematics of the initial instability theory.
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6.7.2 Governing equations

Conservation of Fluid Mass:
∇ · �u = 0 (6.7.1)

Conservation of fluuid momentum:

0 = −∇p − µ

k
u + ρf�g (6.7.2)

Energy:

σ
∂T

∂t
+ u · ∇T = κm∇2T, (6.7.3)

σ =
(ρc)fluid

(ρc)mix

Conservation of Salinity :

n
∂C

∂t
+ u · ∇C = κs∇2C (6.7.4)

Equation of state:
ρf = ρ0 [1 − β (T − T0) + βs (C − C0)] (6.7.5)

Note the sign difference of thermal expansion coefficient and salinity.
Static equilibrium:

u = 0 (6.7.6)

Ts = T0 + ∆T
(
1 − z

H

)
Cs = C0 + ∆C

(
1 − z

H

)
(6.7.7)

PS = P0 − ρ0g

[
z − β

2
∆T

(
2z − z2

H

)
+

βS

2
∆C

(
2z − z2

H

)]
(6.7.8)

6.7.3 Perturbed flow

Let u = u′ be the velocity disturbance, and let

T = Ts + T ′, p = ps + p′, C = Cs + C ′

The perturbations must satisfy:
∇ · u′ = 0 (6.7.9)

0 = −∇p′ − µ

k
u′ − ρ0 (βT ′ − βsC

′)g (6.7.10)

σ
∂T ′

∂t
− w′∆T

H
= κm∇2T ′ (6.7.11)

n
∂C ′

∂t
− w′∆C

H
= κs∇2C ′ (6.7.12)
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6.7.4 Normalization

(x, y, z) = H(x∗, y∗, z∗), ∇ =
∇∗

H

t =
σH2

κm
t∗, u′ =

κm

H
u∗ T ′ = |∆T |T ∗ (6.7.13)

C ′ = |∆C|C∗ p′ =
µκm

k
p∗

The dimensionless equations, are, with ∗ omitted for brevity,

∇ · u = 0 (6.7.14)

−∇p − u +

(
RaT − Ras

Le
C

)
e3 = 0 (6.7.15)

∂T

∂t
− w = ∇2T (6.7.16)

Le

(
N ∂C

∂t
− W

)
= ∇2C, (6.7.17)

where

Ra =
gβkH∆T

νκm
= thermal Rayleigh No. (6.7.18)

Ras =
gβskH∆C

νκs
= salinity Rayleigh No. (6.7.19)

Le =
km

ks

= Lewis No. (6.7.20)

N =
n

σ
(6.7.21)

. (6.7.22)

Note that
Ras = Ra N Le, (6.7.23)

where

N =
βs∆C

β∆T
(6.7.24)

can be either positive or negative. Taking curl of Eqn. (6.7.15)

∇× u = Ra {(Ty − NCy) e1 − (Tx − NCx) e2} . (6.7.25)

Taking curl of the above and using ∇ · u = 0

∇2u = −Ra {(Txz − NCxz) e1 + (Tyz − NCyz) e2 (6.7.26)

− [(Txx + Tyy) − N (Cxx + Cyy)] e3} . (6.7.27)
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The z component is

∇2w = Ra
(∇2

2T − N∇2
2C

)
, ∇2 =

∂2

∂x2
+

∂2

∂y2
(6.7.28)

with the boundary conditions,

w = T = C = 0, at z = 0, 1. (6.7.29)

Consider sinusoidal disturbances⎛
⎝ W

T
C

⎞
⎠ =

⎛
⎝ W̃

T̃

C̃

⎞
⎠ e−iωt+i�x+imy (6.7.30)

From Eqn. (6.7.28) (
D2 − a2

)
W̃ = −a2Ra

(
T̃ − NC̃

)
(6.7.31)

From Eqn. (6.7.16)
−iωT̃ − W̃ =

(
D2 − a2

)
T̃ (6.7.32)

From Eqn. (6.7.17) (
−iω(n/σ)C̃ − W̃

)
Le =

(
D2 − a2

)
C̃ (6.7.33)

where

D =
d

dz
and a2 = 	2 + m2

The boundary conditions are

W̃ = T̃ = C̃ = 0, z = 0, 1 (6.7.34)

We can eliminate T̃ and C̃ by applying the operator(
D2 − a2 + iω

) (
D2 − a2 − iω(n/σ)Le

)
on Eqn. (6.7.31) and using Eqns. (6.7.32) and (6.7.33), to get(

D2 − a2 + iω
) (

D2 − a2 + iω(n/σ)Le
) (

D2 − a2
)
W̃

−a2Ra
(
D2 − a2 + iω(n/σ)Le

)
W̃ + a2Ras

(
D2 − a2 + iω

)
W̃ = 0 (6.7.35)

The boundary conditions are
W̃ = 0 (6.7.36)

D2W̃ = 0 see (6.7.31) (6.7.37)

D4W̃ = 0 see (6.7.32) & (6.7.33) (6.7.38)
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Similarly one can show that D2nW = 0 on the boundaries. Assume the solution

W = sin jπz (6.7.39)

we get from Eqn. (6.7.35) the eigenvalue condition,

− (
j2π2 + ω2

) (
j2π2 + a2 − iω

) (
j2π2 + a2 − iωN )

+a2Ra
[
j2π2 + a2 − iωN ] − a2Ras

[
j2π2 + a2 − iω

]
= 0 (6.7.40)

where
N =

n

σ
Le (6.7.41)

In general ω is complex. At the threshold of instability, ω = real. From the the real part
of (6.7.40):

Ra − Ras =
(j2π2 + a2)

2

a2
− N

a2
ω2 (6.7.42)

From the imaginary part of Eqn. (6.7.40):

ω [N (σRa) − Ras] = ω

[
(j2π2 + a2)

2

a2
(1 + N )

]
(6.7.43)

Both these equations represent instability thresholds and must hold for real ω.

6.7.5 Monotonic instability

There is no oscillation and the real part of ω is also zero. It follows from (6.7.42) that

Ra − Ras =
(j2π2 + a2)

2

a2
(6.7.44)

When there is no salinity, ∆C = 0 and only temperature variation in the background, it
is necessary that ∆T > 0 (or σRa > 0 , warmer water is at the bottom) for instability.
Similarly, when there is no temperature variation (∆T = 0) and only salinity variation,
∆C < 0 ( or Ras < 0 ) is necessary for instability. With both effects present, we expect
that Ra − Ras > 0 corresponds to instability. In particular to find the lowest threshold of
instability as a function of a, we take j = 1, we take

∂

∂a2
(Ra − Ras) = 0 → a2 = π2 (6.7.45)

Therefore, the lowest threshold for ω = 0 gives

Ra − Ras = 4π2 (6.7.46)

which is a straight line in Figure 6.7.3. The region of instabilty but lie to the right of this
line.
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Figure 6.7.3: Domains of montonic stability and instability

6.7.6 Oscillatory instability

We now assume that the real part of ω �= 0. From Eqn. (6.7.43)

NRa − Ras =
(j2π2 + a2)

2

a2
(1 + N )

The lowest threshold of oscillatory instability is at : j = 1, a2 = π2

NRa − Ras = 4π2(1 + N ) (B) (6.7.47)

If NRa−Ras > 4π2(1 +N ), oscillatory instability occurs. The frequency of oscillation ω is
given by Eqn. (6.7.42)

Nω2

π2
= 4π2 − (Ra − Ras) (6.7.48)

Since ω is real, we must have

4π2 ≥ Ra − Ras , (A) (6.7.49)

for instability. The equality sign is one boundary.
The second boundary is defined by Eqn. (6.7.47) which is a straight line that intersects

with Eqn. (6.7.49) at

(Ra)c =
4π2N
N − 1

and (Ras)c =
4π2

N − 1
. (6.7.50)

Example: N = 2
(Ra)c = 8π2, (Ras)c = 4π2

Hence the wedge-like region (doubly hatched) of oscillatory instability is in the first quadrant
of Figure 6.7.4.
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Figure 6.7.4: Domains of stability/instability for nLe = 2.

Example: N = 1/2
The second boundary intersects with the first at

(Ra)c = −4π2 (Ras)c = −2
(
4π2

)
In this case the wedge-like region (doubly hatched) of oscillatory instability is in the third
quadrant of Figure 6.7.5.

Figure 6.7.5: Domains of stability/instability for nLe = 1/2.

6.7.7 Comments on the nonlinear stage

In a Hele-Shaw experiments Griffiths (1981) showed that the monotonic instability leads to
fingering.



9

Imhoff & Green have also given laboratory evidence of fingering as a result of such
instability . The mechanism can be of interest in the transport of
contaminants in ground water.

6.7.8 Comments on thermalhaline instabilty in sea water

Motivated by oceanographic interest, Turner has performed laboratory experiments
for more rapidly diffusing salt solution on top of denser sucrose solution.

Unstable growth of the oscillatory instability results in a mixed layer where the salinity
and temperature are relatively uniform. At the top of this mixed layer, the salinity is
rather discontinuous because of the weak diffusivity. But the temperature profile has a
smoother boundary-layer-like transition because of the large diffusivity. The density profile
is nevertheless continuous. Now this thermal boundary layer is like a Rayleigh -Benard
(or Horton-Rogers-Lapwood) problem. When the jump become large enough the critical
Rayleigh number is exceeded so that Benard/Lapwood convection cells appear as sketched
in Figure 6.7.11. This process continues until another mixed layer develops. Eventually a
staircase profile is developed, as sketched in figure 6.7.12.

Field evidences have been found in oceans where there are strong gradients of temperature
and salinity. It has been observed and recorded in Mediteranian Sea ”below the warm
salty Mediteranian outflow in the eastern North Altlantic and in the western tropical North
Altlantc” (Schmitt, 1994). This is reflected by the staircase structure of temperature and
salinity profiles.
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