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7.1 Equations of Motion in Rotating Coordinates

Since the earth is rotating about the polar axis, the coordinate system fixed on earth is
rotating. We need to know how to express the time rate of change of dynamical quantities
in the rotating coordinates.

A vector fixed in the rotating coordinate system is rotating in the fixed (inertial) coordi-
nate system. Consider therefore a vector rotating in the inertial frame of reference.

7.1.1 Vector of constant magnitude

Figure 7.1.1: Vector ~A(t) rotating at the angular velocity ~Ω.

If ~A = Ai~ei has a constant magnitude but is rotating about an axis at the angular vecloty
~Ω, what is the rate of change d ~A/dt in the fixed coordinate (inertial) system? Let

d ~A = ~A(t + dt) − ~A(t)

From Figure 7.1.1,



d ~A

dt





I

= ~e |A| sin γ
dθ

dt
,
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where subscript I signifies ”inertial system” and ~e is the unit-vector along d ~A. Note ~e ⊥ ~A
and ~e ⊥ ~Ω. Hence,

~e =
~Ω × ~A

| ~Ω × ~A |
.

and ,



d ~A

dt





I

=
~Ω × ~A

| ~Ω × ~A |
| ~A | sin γ

dθ

dt
,

Since
dθ

dt
= Ω,

~Ω × ~A |= Ω | ~A | sin γ.

it follows that 


d ~A

dt





I

= ~Ω × ~A. (7.1.1)

In particular, let ~A = ~ei, i = 1, 2, 3 be a base vector in the rotating frame of reference,

~A = ~ei 6= ~e

Then
d~ei

dt

∣
∣
∣
∣
∣
I

= ~Ω × ~ei. (7.1.2)

7.1.2 A vector of variable magnitude

Let
~B = Bi ~ei

be any non-constant vector in the rotating frame, and let




d ~B

dt





R

=
dBi

dt
~ei

denote its rate of change in the rotating frame. then




d ~B

dt





I

=
dBi

dt
~ei + Bi

d~ei

dt
=




d ~B

dt





R

+ Bi
~Ω × ~ei =




d ~B

dt





R

+ ~Ω × ~B. (7.1.3)

In particular, if ~B = ~r is the position of a fluid particle

d~r

dt

∣
∣
∣
∣
∣
I

=
d~r

dt

∣
∣
∣
∣
∣
R

+ ~Ω × ~r,
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Note that ~r is the same in any coordinate system. Now (d~r/dt)I is the velocity seen in the
inertial frame of reference and (d~r/dt)R is the velocity seen in the rotating frame of reference,
i.e.,

~qI = ~qR + ~Ω × ~r; (7.1.4)

Next we let ~qR be the velocity vector of fluid in the rotating frame of reference; its rates
of change in the two frames of reference are related by

d~qR

dt

∣
∣
∣
∣
∣
I

=
d~qR

dt

∣
∣
∣
∣
∣
R

+ ~Ω × ~qR. (7.1.5)

Taking the time derivative of (7.1.4), and assuming that the angular acceleration of earth to
be zero,

d~Ω

dt
= 0

we get
(

d~qI

dt

)

I

=

(

d~qR

dt

)

I

+ ~Ω ×

(

d~r

dt

)

I

=

(

d~qR

dt

)

R

+ ~Ω × ~qR + ~Ω ×

[(

d~r

dt

)

R

+ ~Ω × ~r

]

=

(

d~qR

dt

)

R

+ 2~Ω × ~qR
︸ ︷︷ ︸

Coriolis acc.

+ ~Ω × (~Ω × ~r)
︸ ︷︷ ︸

centripetal

(7.1.6)

Figure 7.1.2: Coriolis force, position vector and angular velocity

The second term on the right is the Coriolis force, being perpendicular to both ~q and ~Ω.
The last term represents the centripetal force

~Ω × (~Ω × ~r) = −|Ω|2 ~r⊥,

See Figure 7.1.2 for the geometric relations.
The centripetal force may be written in terms of a centripetal force potential φc where

φc =
1

2
(~Ω × ~r) · (~Ω × ~r) =

1

2
|Ω|2r2

⊥
. (7.1.7)
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so that

−∇φc = −
dφc

dr⊥
~e⊥ = −|Ω|2 ~r⊥, (7.1.8)

7.1.3 Summary of governing equations in rotating frame of refer-

ence:

Continuity:
∇ · ~q = 0 (7.1.9)

In the coordinate system rotating at the constant angular velocity, the momentum equation
reads, after dropping subscripts R

ρ

(

d~q

dt
+ 2~Ω × ~q

)

= −∇p + ρ∇(φg + φc) + µ∇2~q (7.1.10)

where

φg = gz φc =
1

2

(

~Ω × ~r
)

·
(

~Ω × ~r
)

7.1.4 Dimensionless parameters

∂~q

∂t

2Ω × ~q
=

O
(

U
T

)

ΩU
= O

(
1

ΩT

)

~q · ∇~q

2~Ω × ~q
=

U2/L

2ΩU
=

U

2ΩL
= Rossby number

ν∇2~q

2Ω × ~q
=

νU/L2

2ΩU
=

ν

2ΩL2
= Ekman number

∇φg = ~g

∇φc = Ω2~rL

For numerical estimate, we take Ω = 1

12 hrs
= 2.31×10−5s−1 and r = earth radius = 6400

km. Then ω2r ∼ (2.31 × 10−5)
2
× 6.4 × 106 ∼ 3 × 10−3m/s2 while g ∼ 10m/s2. Hence

g � Ω2r; gravity is more important than centripetal force.

7.1.5 Coriolis force

Refering to the right of Figure 7.1.3

~Ω =~i (−Ω cos θ) +~j(0) + ~k(Ω sin θ)

Introducing the spherical polar coordinates as in the left of Figure Refering to the right
of Figure 7.1.3, with θ being the latitude. The Coriolis force is
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Figure 7.1.3: The Northern hemisphere.

2~Ω × ~q =

∣
∣
∣
∣
∣
∣
∣

~i ~j ~k
−2Ω cos θ o 2Ω sin θ
u v w

∣
∣
∣
∣
∣
∣
∣

= ~i (−2Ωv sin θ) +~j (2Ωu sin θ + 2Ωw cos θ) + ~k (−2Ωv cos θ)

Consider shallow waters where the depth D is much less than the horizontal length L,
i.e., D � L, and compare the two terms in the y direction of (~j)

2Ωw cos θ

2Ωu sin θ
=

w

u
cot θ = O

(
D

L

)

cot θ � 1

except along the equator where θ = 0
In the z direction of (~k),

−2Ωv cos θ
1

ρ
∂dp
∂z

=
−2Ωu cos θ

L
D

∂pd

∂x

=
D

L

−2Ωu cos θ

max
(

U
T
, U2

L
, ΩU

) = O
(

D

L

)

� 1

Hence in shallow seas
2~Ω × ~q ∼=~i(−2Ωv sin θ) +~j(2Ωu sin θ)

Define
f = 2Ω sin θ (7.1.11)

to be the Coriolis parameter, then

2~Ω × ~q = −fv~i + fu~j (7.1.12)

In the northern hemisphere, 0 < θ < π/2.


