Lecture Notes on Fluid Dynamics

(1.63J/2.21J)
by Chiang C. Mei, 2002
7-5cyclone.tex
Ref: D. J. Acheson: Elementary Fluid Mechanics, §8.5

7.5 Cyclonic current forced by a swirling wind

Of practical interest is the case of nonuniform wind stress on the surface. As an extremely simplified model we consider a vortical wind stress over a large sea ${ }^{1}$. See Figure 7.5.1.

Figure 7.5.1: Steady cyclonic flow in a shallow sea forced by swirling wind
Let us restricting to a low Rossby number flow for simplicity. Continuity requires:

$$
\begin{equation*}
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}=0 \tag{7.5.1}
\end{equation*}
$$

The momentum equations are

$$
\begin{align*}
-f v & =-\frac{1}{\rho} \frac{\partial p}{\partial x}+\nu \nabla^{2} u \tag{7.5.2}\\
f u & =-\frac{1}{\rho} \frac{\partial p}{\partial y}+\nu \nabla^{2} v \tag{7.5.3}\\
0 & =-\frac{1}{\rho} \frac{\partial p}{\partial z}+\nu \nabla^{2} w \tag{7.5.4}
\end{align*}
$$

[^0]The boundary conditions are : no slip on the bottom:

$$
\begin{equation*}
u=v=w=0, \quad z=0 \tag{7.5.5}
\end{equation*}
$$

and given wind stress on the top:

$$
\begin{equation*}
\tau_{\theta z}^{S}=\rho \operatorname{Tr} / 2, \quad \tau_{r z}^{S}=0, \quad z=H \tag{7.5.6}
\end{equation*}
$$

The wind stress is cyclonic, where T is the curl of the wind sress vector:

$$
\begin{equation*}
\nabla \times \vec{\tau}^{S}=\vec{k}\left(\frac{1}{r} \frac{\partial}{\partial r}\left(r \tau_{\theta z}^{S}-\frac{1}{r} \frac{\partial \tau_{r z}^{S}}{\partial \theta}\right)=\rho T \vec{k} .\right. \tag{7.5.7}
\end{equation*}
$$

In cartesian coordinates the wind stress components are:

$$
\begin{gather*}
\tau_{x z}^{S}=-\tau_{\theta z}^{S} \sin \theta=-\frac{\rho T}{2} r \sin \theta=-\frac{\rho T}{2} y, \tag{7.5.8}\\
\tau_{y z}^{S}=\tau_{\theta z}^{S} \cos \theta=\frac{\rho T}{2} r \cos \theta=\frac{\rho T}{2} x, \tag{7.5.9}
\end{gather*}
$$

Kinematically we assume that

$$
\begin{equation*}
w=0, \quad z=H \tag{7.5.10}
\end{equation*}
$$

7.5.1 Inviscid core

Outside the surface an bottom boundary layers, we have

$$
\begin{align*}
-f v_{I} & =-\frac{1}{\rho} \frac{\partial p}{\partial x} \tag{7.5.11}\\
f u_{I} & =-\frac{1}{\rho} \frac{\partial p}{\partial y} \tag{7.5.12}
\end{align*}
$$

This is clearly the state of geostrophyic balance. Momentum balence in the vertical direction is trivial,

$$
0=-\frac{1}{\rho} \frac{\partial p}{\partial z}
$$

Consequently u_{I} and v_{I} must be independent of z. in accordance with the Taylor-Proudman theorem. Note that conservation of mass is automatically satisfied,

$$
\frac{\partial u_{I}}{\partial x}+\frac{\partial v_{I}}{\partial y}=0
$$

and the vorticity is

$$
\frac{\partial v_{I}}{\partial x}-\frac{\partial u_{I}}{\partial y}=-\frac{1}{f}\left(\frac{\partial^{2} p}{\partial x^{2}}+\frac{\partial^{2} p}{\partial y^{2}}\right)
$$

The horizontal components $u_{I}(x, y), v_{I}(x, y)$ are not determined yet. The vertical velocity w_{I} can at best be a contant in z.

7.5.2 Bottom boundary layer

Let us keep the dominant viscous stress terms in the momentum equations,

$$
\begin{align*}
-f\left(v-v_{I}\right) & =\nu \frac{\partial^{2}\left(u-u_{I}\right)}{\partial z^{2}} \tag{7.5.13}\\
f\left(u-u_{I}\right) & =\nu \frac{\partial^{2}\left(v-v_{I}\right)}{\partial z^{2}} \tag{7.5.14}
\end{align*}
$$

The boundary conditions are

$$
\begin{array}{lll}
u-u_{I}=-u_{I} & v-v_{I}=-v_{I} & z=0 \\
u-u_{I} \rightarrow 0 & v-v_{I} \rightarrow 0 & z \gg \delta
\end{array}
$$

where

$$
\begin{equation*}
\delta=\sqrt{\frac{2 \nu}{f}} \tag{7.5.15}
\end{equation*}
$$

is the Ekman boundary layer thickness.
The solution is left to the reader as an exercise

$$
\begin{align*}
& u-u_{I}=-e^{-z / \delta}\left(u_{I} \cos \frac{z}{\delta}+v_{I} \sin \frac{z}{\delta}\right) \tag{7.5.16}\\
& v-v_{I}=-e^{-z / \delta}\left(v_{I} \cos \frac{z}{\delta}-u_{I} \cos \frac{z}{\delta}\right) . \tag{7.5.17}
\end{align*}
$$

From continuity, the vertical component can be computed. Let $\zeta=z / \delta$,

$$
\begin{align*}
\frac{\partial w}{\partial z} & =\frac{1}{\delta} \frac{\partial w}{\partial \zeta}=-\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right) \tag{7.5.18}\\
& =\left(\frac{\partial v_{I}}{\partial x}-\frac{\partial u_{I}}{\partial y}\right) e^{-\zeta} \sin \zeta+\left(\frac{\partial u_{I}}{\partial x}+\frac{\partial v_{I}}{\partial y}\right)\left(e^{-\zeta} \cos \zeta\right)
\end{align*}
$$

The second term vanishes, hence,

$$
\begin{aligned}
w & =\delta \int_{0}^{\zeta} d \zeta\left(\frac{\partial v_{I}}{\partial x}-\frac{\partial u_{I}}{\partial y}\right) e^{-\zeta} \sin \zeta \\
& =\left.\delta\left(\frac{\partial v_{I}}{\partial x}-\frac{\partial u_{I}}{\partial y}\right) \frac{e^{-\zeta}}{2}(-\sin \zeta-\cos \zeta)\right|_{0} ^{\zeta} \\
& =\frac{\delta}{2}\left(\frac{\partial v_{I}}{\partial x}-\frac{\partial u_{I}}{\partial y}\right)\left[1-e^{-\zeta}(\cos \zeta+\sin \zeta)\right]
\end{aligned}
$$

At the outer edge of the bottom boundary layer, $\zeta=z / \delta \gg 1$

$$
\begin{equation*}
w(\infty) \equiv \frac{\delta}{2}\left(\frac{\partial v_{I}}{\partial x}-\frac{\partial u_{I}}{\partial y}\right)=\frac{\delta}{2} \omega_{I} \tag{7.5.19}
\end{equation*}
$$

where ω_{I} is the vorticity in the geostrophic interior. Thus there is vertical flux from the bottom boundary layer when the interior flow is horizontally nonuniform; this is called the Ekman pumping!

We still don't know the geostrophic flow field.

7.5.3 Surface boundary layer

The momentum equations are

$$
\begin{align*}
-f\left(v-v_{I}\right) & =\nu \frac{\partial^{2}\left(u-u_{I}\right)}{\partial z^{2}} \tag{7.5.20}\\
f\left(u-u_{I}\right) & =\nu \frac{\partial^{2}\left(v-v_{I}\right)}{\partial z^{2}}
\end{align*}
$$

On $z=H$ the boundary conditions are

$$
\begin{equation*}
\nu \frac{\partial u}{\partial z}=-\frac{T}{2} y, \quad \nu \frac{\partial v}{\partial z}=\frac{T}{2} x, \quad z=H \tag{7.5.21}
\end{equation*}
$$

Far beneath the surface

$$
\begin{equation*}
u \rightarrow u_{I}, \quad v \rightarrow v_{I} ; \quad(H-z) \gg \delta \tag{7.5.22}
\end{equation*}
$$

Let us introduce the boundary-layer coordinate

$$
\begin{equation*}
\eta=\frac{H-z}{\delta} \quad 0<\eta<\infty . \tag{7.5.23}
\end{equation*}
$$

so that

$$
\begin{equation*}
\frac{\partial}{\partial z} \rightarrow-\frac{1}{\delta} \frac{\partial}{\partial \eta} \tag{7.5.24}
\end{equation*}
$$

The solution satisfies the momentum equations and (7.5.22) is of the form

$$
\begin{align*}
u-u_{I} & =e^{-\eta}(A \cos \eta+B \sin \eta) \tag{7.5.25}\\
v-v_{I} & =e^{-\eta}(B \cos \eta-A \sin \eta) \tag{7.5.26}
\end{align*}
$$

In order to satisfy (7.5.21), we first note that

$$
\begin{align*}
& \frac{\partial u}{\partial \eta}=e^{-\eta}((-A+B) \cos \eta+(-A-B) \sin \eta) \tag{7.5.27}\\
& \frac{\partial v}{\partial \eta}=e^{-\eta}((-A-B) \cos \eta+(A-B) \sin \eta) \tag{7.5.28}
\end{align*}
$$

Applying (7.5.21), we get

$$
\begin{equation*}
-\frac{\nu}{\delta}(-A+B)=-\frac{T y}{2}, \quad-\frac{\nu}{\delta}(-A-B)=\frac{T x}{2} \tag{7.5.29}
\end{equation*}
$$

with the results,

$$
\begin{equation*}
A=\frac{T \delta}{4 \nu}(x-y), \quad B=\frac{T \delta}{4 \nu}(x+y) \tag{7.5.30}
\end{equation*}
$$

Hence the horizontal velocities are

$$
\begin{align*}
& u-u_{I}=\frac{T \delta}{4 \nu} e^{-\eta}((x-y) \cos \eta+(x+y) \sin \eta) \tag{7.5.31}\\
& v-v_{I}=\frac{T \delta}{4 \nu} e^{-\eta}((x+y) \cos \eta-(x-y) \sin \eta) \tag{7.5.32}
\end{align*}
$$

By continuity

$$
\begin{aligned}
\frac{\partial w}{\partial z} & =-\frac{1}{\delta} \frac{\partial w}{\partial \eta}=-\left(\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}\right) \\
& =\frac{T \delta}{4 \nu} e^{-\eta}(2 \cos \eta+2 \sin \eta)
\end{aligned}
$$

the vertrical velocity can be found,

$$
\begin{align*}
w(\eta) & =\frac{T \delta}{2 \nu} \int_{0}^{\eta} d \eta e^{-\eta}(\cos \eta+\sin \eta) \\
& =\frac{T \delta}{2 \nu}\left[e^{-\eta}(-\cos \eta+\sin \eta)+e^{-\eta}(-\cos \eta-\sin \eta)\right] \\
& =\frac{T \delta}{2 \nu}\left[\left(1-e^{-\eta} \cos \eta\right)\right] \tag{7.5.33}
\end{align*}
$$

At the outer edge of the surface boundary layer $\eta \gg 1$

$$
\begin{equation*}
w(\infty)=w_{T}=\frac{T \delta}{2 \nu} \tag{7.5.34}
\end{equation*}
$$

By Taylor-Proudman theorem, $w(z)=w_{B}=w_{T}$. Therefore

$$
\begin{equation*}
w_{B}=\frac{\delta}{2} \omega_{I}=\frac{T \delta}{2 \nu}=w_{T} \tag{7.5.35}
\end{equation*}
$$

and the interior vorticity is

$$
\begin{equation*}
\omega_{I}=\frac{T}{\nu} . \tag{7.5.36}
\end{equation*}
$$

What are u_{I} and v_{I} ? In cylindrical polar coordinates

$$
\omega_{I}=\frac{1}{r} \frac{\partial}{\partial r}\left(r u_{I_{\theta}}\right)-\frac{1}{r} \frac{\partial u_{I_{r}}}{\partial \theta}==\frac{1}{r} \frac{\partial}{\partial r}\left(r u_{I_{\theta}}\right) .
$$

Since $\partial / \partial \theta=0$, we have ,

$$
\begin{gathered}
\omega_{I}=\frac{1}{r} \frac{d}{d r}\left(r u_{I_{\theta}}\right) \\
\frac{d}{d r}\left(r u_{I_{\theta}}\right)=\frac{T}{\nu} r
\end{gathered}
$$

which implies

$$
u_{I_{\theta}}=\frac{T}{2 \nu} r .
$$

Since

$$
\frac{1}{r} \frac{\partial}{\partial r}\left(r u_{I_{r}}\right)+\frac{1}{r} \frac{\partial u_{\theta}}{\partial \theta}=0
$$

which leads to

$$
u_{I_{r}}=0 .
$$

The interior flow is geostrophic and cyclonic.
In cartesian form we have

$$
\begin{gather*}
u_{I}=-u_{I_{\theta}} \sin \theta=-\frac{T}{2 \nu} r \sin \theta, \tag{7.5.37}\\
v_{I}=u_{I_{\theta}} \cos \theta=\frac{T}{2 \nu} r \cos \theta \tag{7.5.38}
\end{gather*}
$$

Now the radial component inside the bottom boundary layer is

$$
u_{r}=u_{r}-u_{I_{r}}
$$

since $u_{I_{r}}=0$. The latter is

$$
\begin{aligned}
u_{r}-u_{I_{r}} & =-e^{-\zeta}\left[\left(u_{I} \cos \zeta+v_{I} \sin \zeta\right) \cos \theta+\left(v_{I} \cos \zeta-u_{I} \sin \zeta\right) \sin \theta\right] \\
& =-e^{-\zeta}\left[\cos \zeta\left(u_{I} \cos \theta+v_{I} \sin \theta\right)+\sin \zeta\left(v_{I} \cos \theta-u_{I} \sin \theta\right)\right] \\
& =-e^{-\zeta} \sin \zeta\left(v_{I} \cos \theta-u_{I} \sin \theta\right) \\
& =-\frac{T r}{2 \nu} e^{-\zeta} \sin \zeta\left(\cos ^{2} \theta+\sin ^{2} \theta\right) \\
& =-\frac{T r}{2 \nu} e^{-\zeta} \sin \zeta
\end{aligned}
$$

and is negative in most of the boundary layer. Hence the flow spirals inward towards the z axis in the bottom boundary layer. Similarly one can show that the flow in the surface boundary layer has an outward radial component.

In summary, the swirling wind induces a vorticity T / ν in the geostrophic interior. The flow in the bottom Ekman layer spirals inward, rises vertically at a uniform velocity while spiralling at the angular velocity T / ν and maintaining a constant vorticity in the geotrophic interior, then spirals outward in the surface Ekman layer. The flow is therefore cyclonic.

[^0]: ${ }^{1}$ Acheson demonstrated a very similar problem of a circular layer of water bounded above and below by two horizontal planes. While the bottom plane rotates about the vertical axis at the rate Ω the top cover rotates steadily at a different rate $(1+\epsilon) \Omega$.

