Lecture Notes on Fluid Dynamics (1.63J/2.21J) by Chiang C. Mei, 2002

7.6 Transient longshore wind

[Ref]: Chapter 14, p. 195 ff, Cushman-Roisin Csanady: Circulation in the Coastal Ocean

Figure 7.6.1: Longshore wind

In view of the last section, we ignore the bottom stress. Assume that the wind is uniform in space but transient in time, so that $\partial/\partial y = 0$, The flux equations are

$$\frac{\partial \eta}{\partial t} + \frac{\partial U}{\partial x} = 0 \tag{7.6.1}$$

$$\frac{\partial U}{\partial t} - fV = -gh\frac{\partial \eta}{\partial x} \tag{7.6.2}$$

$$\frac{\partial v}{\partial t} + fU = \frac{\tau_y^S}{\rho}.$$
(7.6.3)

The boundary condition on the coast x = 0: U = 0.

7.6.1 Sudden long-shore wind

Let the wind stress be

$$\tau_y^S = \begin{cases} 0, & t \le 0, \\ T, & t > 0. \end{cases}$$
(7.6.4)

the initial conditions are

$$\eta, U, V = 0, \quad t = 0, \quad \forall x.$$
 (7.6.5)

This initial-boundary value problem can be solved by Laplace transform (Crépon, 1967). The solution consists of two parts: one part is oscillatory and decays with time; the other part increases monotonically with time. To avoid the complex mathematics we only examine the latter which is the dominant part for large time,

$$U = \bar{U}(x), \quad V = t\bar{V}(x), \quad \eta = t\bar{\eta}(x)$$
 (7.6.6)

The oscillatory part is needed to ensure the initial condition on U.

It is easy to see from (7.6.1) to (7.6.3) that

$$\bar{\eta} + \frac{d\bar{U}}{dx} = 0 \tag{7.6.7}$$

$$f\bar{V} = gh\frac{d\bar{\eta}}{dx} \tag{7.6.8}$$

$$\bar{V} + f\bar{U} = T/\rho \tag{7.6.9}$$

These three equations can be combined into one :

$$\frac{d^2\bar{U}}{dx^2} - \frac{f^2}{gh}\bar{U} = -\frac{fT}{\rho gh}$$
(7.6.10)

The solution satisfies no flux on the coast is

$$\bar{U} = \frac{T}{\rho f} \left(1 - e^{-x/R_o} \right) \tag{7.6.11}$$

where

$$R_o = \frac{\sqrt{gh}}{f} \tag{7.6.12}$$

is called the Rossby radius of deformation. Since $f = 10^{-4}$ 1/s, in a shallow sea of h = 10 m the Rossby radius is about 10^5 m = 100 km.

It is easy to find that

$$\eta = t\bar{\eta} = -t\frac{T}{\rho gh}e^{-x/R_o} \tag{7.6.13}$$

and

$$V = t\bar{V} = t\frac{T}{\rho f}e^{-x/R_{o}}$$
(7.6.14)

Clearly when $x/R_o \gg 1$, the coast line has no influence. The flux is $U = T/\rho f$, V = 0, and is inclined to the right of the wind by 90 degrees, as predicted by the Ekman layer theory. The sea surface sinks near the coast if T > 0 (coast is on the left of wind) and rises if T < 0(coast is on the right of wind).

7.6.2 Sinusoidal wind stress

We now consider

$$\tau_y^S = \Re \left(\tau_0 e^{-i\omega t} \right) = \tau_o \sin \omega t \tag{7.6.15}$$

Let

$$(\eta, U, V) = \Re \left[(\eta_0, U_0, V_0) e^{-i\omega t} \right]$$
 (7.6.16)

The symbol \Re (real part of) will be omitted for brevity.

Let us calculate the total flux (The boundary layers can be studied later.),

$$-i\omega\eta_0 + \frac{dU_0}{dx} = 0 (7.6.17)$$

$$-i\omega U_0 - fV_0 = -gH \frac{d\eta_0}{dx}$$
(7.6.18)

$$-i\omega V_0 + fU_0 = i\frac{\tau_0}{\rho}.$$
 (7.6.19)

An equation for a single variable can be obtained. For example by solving Eqns. (7.6.18) and (7.6.19) for U_0 and V_0 , we get

$$U_{0} = \frac{\begin{vmatrix} -gH \frac{d\eta_{0}}{dx} & -f \\ i\tau_{0} & -i\omega \end{vmatrix}}{\begin{vmatrix} -i\omega & -f \\ f & -i\omega \end{vmatrix}}$$
$$= \frac{i\omega gh \frac{d\eta_{0}}{dx} + i\tau_{0}f}{-\omega^{2} + f^{2}}$$
$$U_{0} = \frac{i\omega gh}{f^{2} - \omega^{2}} \left(\frac{d\eta_{0}}{dx} + \frac{\tau_{0}f}{\rho\omega gh}\right)$$
(7.6.20)

Differentiate Eqn. (7.6.20) and use Eqn. (7.6.17)

$$-i\omega\eta_0 + \frac{i\omega gh}{f^2 - \omega^2} \frac{d^2\eta_0}{dx^2} = 0$$

or

$$\frac{d^2\eta_0}{dx^2} - \frac{f^2 - \omega^2}{gh}\eta_0 = 0 \tag{7.6.21}$$

We now distinguish two cases.

Low frequency: $\omega < f$

The solution to (7.6.21) bounded at infinity is

$$\eta_0 = A \, e^{-x/R_0} \tag{7.6.22}$$

where

$$R_0 = \sqrt{\frac{gh}{f^2 - \omega^2}}.$$
 (7.6.23)

is the modified Rossby radius.

Applying the B.C. on the coast: $U_0 = 0$, we get from (7.6.20),

$$\frac{d\eta_0}{dx} = \frac{-f}{\rho g H} \frac{\tau_0}{\omega} \stackrel{(7.6.22)}{=} \frac{-A}{R_0}.$$

and,

$$A = \frac{\tau_0}{\omega} \frac{f}{\rho g H} R_0$$

Hence

$$\eta_0 = \frac{f\tau_0}{\rho\omega gH} R_0 e^{-x/R_0}$$

and finally

$$\eta = \frac{f\tau_0}{\rho\omega gH} R_0 \, e^{-x/R_0} \, e^{-i\omega t} \tag{7.6.24}$$

Now

$$\eta_t = -\frac{if\tau_0}{\rho gH} R_0 e^{-x/R_o} e^{-i\omega t} = -U_x.$$

from Eqn. (7.6.1). Integrating with respect to x,

$$U = \frac{if\tau_o R_0^2}{\rho g h} \left(1 - e^{-x/R_0}\right) e^{-i\omega t}.$$
 (7.6.25)

From Eqn. (7.6.20)

$$\begin{aligned} -i\omega V_0 &= -fU_0 + i\tau_0/\rho \\ &= \frac{-if^2\tau_0 R_0^2}{\rho g H} \left(1 - e^{-x/R_0}\right) + \frac{i\tau_0}{\rho} \\ &= \frac{i\tau_0}{\rho} \left[1 - \frac{f^2}{gh} R_0^2 \left(1 - e^{-x/R_0}\right)\right] \end{aligned}$$
$$V_0 &= -\frac{\tau_0}{\rho \omega} \left[1 - \frac{f^2}{f^2 - \omega^2} \left(1 - e^{-x/R_0}\right)\right]$$

$$= -\frac{\tau_0}{\rho\omega} \frac{f^2}{f^2 - \omega^2} \left[\frac{f^2 - \omega^2}{f^2} - 1 + e^{-x/R_0} \right]$$

$$= \frac{\tau_0}{\rho\omega} \frac{\omega^2}{f^2} \frac{f^2}{f^2 - \omega^2} \left[1 - \frac{f^2}{\omega^2} e^{-x/R_0} \right]$$

$$= \frac{\tau_0 \omega/\rho_0}{f^2 - \omega^2} \left[1 - \frac{f^2}{\omega^2} e^{-x/R_0} \right].$$

Let us summarize the results in real form,

$$\tau_y^S = \tau_0 \sin \omega t \tag{7.6.26}$$

$$\eta = \frac{f\tau_0}{\rho\omega gh} R_0 e^{-x/R_0} \cos \omega t$$
(7.6.27)

$$U = \frac{f\tau_o R_0^2}{\rho g h} \left(1 - e^{-x/R_0}\right) \sin \omega t$$
 (7.6.28)

$$V = \frac{\tau_0 \omega}{\rho (f^2 - \omega^2)} \left(1 - \frac{f^2}{\omega^2} e^{-x/R_0} \right) \cos \omega t.$$
 (7.6.29)

If $\tau_0 < 0$ (or > 0), i.e., the coast is on the right (left) of wind, the sea level near the coast rises (sinks).

High frequency : $\omega > f$

Of the two possible oscillatory solutions to (7.6.21), we must choose the one that represents outgoing waves at infinity (the radiation condition),

$$\eta_0 = A e^{ikx},\tag{7.6.30}$$

where the wavenumber is the inverse of the modified Rossby radius of deformation,

$$k = \sqrt{\frac{\omega^2 - f^2}{gh}} \tag{7.6.31}$$

We leave it to the reader to show that, in complex form,

$$\eta = \frac{i\tau_0 f}{\rho g h \omega k} e^{ikx - i\omega t}$$
(7.6.32)

$$U = -\frac{i\tau_0 f}{\rho(\omega^2 - f^2)} \left(1 - e^{ikx}\right) e^{-i\omega t}$$
(7.6.33)

$$V = -\frac{\tau_0}{\rho\omega} \left[1 + \frac{f^2}{\omega^2 - f^2} \left(1 - e^{ikx} \right) \right] e^{-i\omega t}$$
(7.6.34)

or, in real form,

$$\eta = -\frac{\tau_0 f}{\rho g h \omega k} \sin(kx - \omega t), \qquad (7.6.35)$$

$$U = -\frac{\tau_0 f}{\rho(\omega^2 - f^2)} \left(\sin \omega t + \sin(kx - \omega t)\right)$$
(7.6.36)

$$V = -\frac{\tau_0}{\rho\omega} \left[1 + \frac{f^2}{\omega^2 - f^2} \left(\cos \omega t - \cos(kx - \omega t) \right) \right]$$
(7.6.37)