## Lecture Notes on Fluid Dynamics

(1.63J/2.21J)
by Chiang C. Mei, 2002

### 7.6 Transient longshore wind

[Ref]: Chapter 14, p. 195 ff, Cushman-Roisin
Csanady: Circulation in the Coastal Ocean


Figure 7.6.1: Longshore wind
In view of the last section, we ignore the bottom stress. Assume that the wind is uniform in space but transient in time, so that $\partial / \partial y=0$, The flux equations are

$$
\begin{gather*}
\frac{\partial \eta}{\partial t}+\frac{\partial U}{\partial x}=0  \tag{7.6.1}\\
\frac{\partial U}{\partial t}-f V=-g h \frac{\partial \eta}{\partial x}  \tag{7.6.2}\\
\frac{\partial v}{\partial t}+f U=\frac{\tau_{y}^{S}}{\rho} . \tag{7.6.3}
\end{gather*}
$$

The boundary condition on the coast $x=0: \quad U=0$.

### 7.6.1 Sudden long-shore wind

Let the wind stress be

$$
\tau_{y}^{S}= \begin{cases}0, & t \leq 0  \tag{7.6.4}\\ T, & t>0\end{cases}
$$

the initial conditions are

$$
\begin{equation*}
\eta, U, V=0, \quad t=0, \quad \forall x . \tag{7.6.5}
\end{equation*}
$$

This initial-boundary value problem can be solved by Laplace transform (Crépon, 1967). The solution consists of two parts: one part is oscillatory and decays with time; the other part increases monotonically with time. To avoid the complex mathematics we only examine the latter which is the dominant part for large time,

$$
\begin{equation*}
U=\bar{U}(x), \quad V=t \bar{V}(x), \quad \eta=t \bar{\eta}(x) \tag{7.6.6}
\end{equation*}
$$

The oscillatory part is needed to ensure the initial condition on $U$.
It is easy to see from (7.6.1) to (7.6.3) that

$$
\begin{gather*}
\bar{\eta}+\frac{d \bar{U}}{d x}=0  \tag{7.6.7}\\
f \bar{V}=g h \frac{d \bar{\eta}}{d x}  \tag{7.6.8}\\
\bar{V}+f \bar{U}=T / \rho \tag{7.6.9}
\end{gather*}
$$

These three equations can be combined into one :

$$
\begin{equation*}
\frac{d^{2} \bar{U}}{d x^{2}}-\frac{f^{2}}{g h} \bar{U}=-\frac{f T}{\rho g h} \tag{7.6.10}
\end{equation*}
$$

The solution satisfies no flux on the coast is

$$
\begin{equation*}
\bar{U}=\frac{T}{\rho f}\left(1-e^{-x / R_{o}}\right) \tag{7.6.11}
\end{equation*}
$$

where

$$
\begin{equation*}
R_{o}=\frac{\sqrt{g h}}{f} \tag{7.6.12}
\end{equation*}
$$

is called the Rossby radius of deformation. Since $f=10^{-4} 1 / \mathrm{s}$, in a shallow sea of $h=10 \mathrm{~m}$ the Rossby radius is about $10^{5} \mathrm{~m}=100 \mathrm{~km}$.

It is easy to find that

$$
\begin{equation*}
\eta=t \bar{\eta}=-t \frac{T}{\rho g h} e^{-x / R_{o}} \tag{7.6.13}
\end{equation*}
$$

and

$$
\begin{equation*}
V=t \bar{V}=t \frac{T}{\rho f} e^{-x / R_{o}} \tag{7.6.14}
\end{equation*}
$$

Clearly when $x / R_{o} \gg 1$, the coast line has no influence. The flux is $U=T / \rho f, V=0$, and is inclined to the right of the wind by 90 degrees, as predicted by the Ekman layer theory. The sea surface sinks near the coast if $T>0$ (coast is on the left of wind) and rises if $T<0$ (coast is on the right of wind).

### 7.6.2 Sinusoidal wind stress

We now consider

$$
\begin{equation*}
\tau_{y}^{S}=\Re\left(\tau_{0} e^{-i \omega t}\right)=\tau_{o} \sin \omega t \tag{7.6.15}
\end{equation*}
$$

Let

$$
\begin{equation*}
(\eta, U, V)=\Re\left[\left(\eta_{0}, U_{0}, V_{0}\right) e^{-i \omega t}\right] \tag{7.6.16}
\end{equation*}
$$

The symbol $\Re$ (real part of) will be omitted for brevity.
Let us calculate the total flux (The boundary layers can be studied later.),

$$
\begin{gather*}
-i \omega \eta_{0}+\frac{d U_{0}}{d x}=0  \tag{7.6.17}\\
-i \omega U_{0}-f V_{0}=-g H \frac{d \eta_{0}}{d x}  \tag{7.6.18}\\
-i \omega V_{0}+f U_{0}=i \frac{\tau_{0}}{\rho} \tag{7.6.19}
\end{gather*}
$$

An equation for a single variable can be obtained. For example by solving Eqns. and (7.6.19) for $U_{0}$ and $V_{0}$, we get

$$
\begin{align*}
U_{0} & =\frac{\left|\begin{array}{ll}
-g H \frac{d \eta_{0}}{d x} & -f \\
i \tau_{0} & -i \omega
\end{array}\right|}{\left|\begin{array}{cc}
-i \omega & -f \\
f & -i \omega
\end{array}\right|} \\
& =\frac{i \omega g h \frac{d \eta_{0}}{d x}+i \tau_{0} f}{-\omega^{2}+f^{2}} \\
U_{0} & =\frac{i \omega g h}{f^{2}-\omega^{2}}\left(\frac{d \eta_{0}}{d x}+\frac{\tau_{0} f}{\rho \omega g h}\right) \tag{7.6.20}
\end{align*}
$$

Differentiate Eqn. (7.6.20) and use Eqn. (7.6.17)

$$
-i \omega \eta_{0}+\frac{i \omega g h}{f^{2}-\omega^{2}} \frac{d^{2} \eta_{0}}{d x^{2}}=0
$$

or

$$
\begin{equation*}
\frac{d^{2} \eta_{0}}{d x^{2}}-\frac{f^{2}-\omega^{2}}{g h} \eta_{0}=0 \tag{7.6.21}
\end{equation*}
$$

We now distinguish two cases.

Low frequency: $\omega<f$
The solution to (7.6.21) bounded at infinity is

$$
\begin{equation*}
\eta_{0}=A e^{-x / R_{0}} \tag{7.6.22}
\end{equation*}
$$

where

$$
\begin{equation*}
R_{0}=\sqrt{\frac{g h}{f^{2}-\omega^{2}}} . \tag{7.6.23}
\end{equation*}
$$

is the modified Rossby radius.
Applying the B.C. on the coast: $U_{0}=0$, we get from (7.6.20),

$$
\frac{d \eta_{0}}{d x}=\frac{-f}{\rho g H} \frac{\tau_{0}}{\omega} \stackrel{(7.6 .22)}{=} \frac{-A}{R_{0}}
$$

and,

$$
A=\frac{\tau_{0}}{\omega} \frac{f}{\rho g H} R_{0}
$$

Hence

$$
\eta_{0}=\frac{f \tau_{0}}{\rho \omega g H} R_{0} e^{-x / R_{o}}
$$

and finally

$$
\begin{equation*}
\eta=\frac{f \tau_{0}}{\rho \omega g H} R_{0} e^{-x / R_{0}} e^{-i \omega t} \tag{7.6.24}
\end{equation*}
$$

Now

$$
\eta_{t}=-\frac{i f \tau_{0}}{\rho g H} R_{0} e^{-x / R_{o}} e^{-i \omega t}=-U_{x}
$$

from Eqn. (7.6.1). Integrating with respect to $x$,

$$
\begin{equation*}
U=\frac{i f \tau_{o} R_{0}^{2}}{\rho g h}\left(1-e^{-x / R_{0}}\right) e^{-i \omega t} \tag{7.6.25}
\end{equation*}
$$

From Eqn. (7.6.20)

$$
\begin{aligned}
-i \omega V_{0} & =-f U_{0}+i \tau_{0} / \rho \\
& =\frac{-i f^{2} \tau_{0} R_{0}^{2}}{\rho g H}\left(1-e^{-x / R_{0}}\right)+\frac{i \tau_{0}}{\rho} \\
& =\frac{i \tau_{0}}{\rho}\left[1-\frac{f^{2}}{g h} R_{0}^{2}\left(1-e^{-x / R_{0}}\right)\right] \\
V_{0}=- & \frac{\tau_{0}}{\rho \omega}\left[1-\frac{f^{2}}{f^{2}-\omega^{2}}\left(1-e^{-x / R_{0}}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& =-\frac{\tau_{0}}{\rho \omega} \frac{f^{2}}{f^{2}-\omega^{2}}\left[\frac{f^{2}-\omega^{2}}{f^{2}}-1+e^{-x / R_{0}}\right] \\
& =\frac{\tau_{0}}{\rho \omega} \frac{\omega^{2}}{f^{2}} \frac{f^{2}}{f^{2}-\omega^{2}}\left[1-\frac{f^{2}}{\omega^{2}} e^{-x / R_{0}}\right] \\
& =\frac{\tau_{0} \omega / \rho_{0}}{f^{2}-\omega^{2}}\left[1-\frac{f^{2}}{\omega^{2}} e^{-x / R_{0}}\right] .
\end{aligned}
$$

Let us summarize the results in real form,

$$
\begin{align*}
\tau_{y}^{S} & =\tau_{0} \sin \omega t  \tag{7.6.26}\\
\eta & =\frac{f \tau_{0}}{\rho \omega g h} R_{0} e^{-x / R_{0}} \cos \omega t  \tag{7.6.27}\\
U & =\frac{f \tau_{o} R_{0}^{2}}{\rho g h}\left(1-e^{-x / R_{0}}\right) \sin \omega t  \tag{7.6.28}\\
V & =\frac{\tau_{0} \omega}{\rho\left(f^{2}-\omega^{2}\right)}\left(1-\frac{f^{2}}{\omega^{2}} e^{-x / R_{0}}\right) \cos \omega t \tag{7.6.29}
\end{align*}
$$

If $\tau_{0}<0$ (or $>0$ ), i.e., the coast is on the right (left) of wind, the sea level near the coast rises (sinks).

## High frequency : $\omega>f$

Of the two possible oscillatory solutions to (7.6.21), we must choose the one that represents outgoing waves at infinty (the radiation condition),

$$
\begin{equation*}
\eta_{0}=A e^{i k x} \tag{7.6.30}
\end{equation*}
$$

where the wavenumber is the inverse of the modified Rossby radius of deformation,

$$
\begin{equation*}
k=\sqrt{\frac{\omega^{2}-f^{2}}{g h}} \tag{7.6.31}
\end{equation*}
$$

We leave it to the reader to show that, in complex form,

$$
\begin{align*}
\eta & =\frac{i \tau_{0} f}{\rho g h \omega k} e^{i k x-i \omega t}  \tag{7.6.32}\\
U & =-\frac{i \tau_{0} f}{\rho\left(\omega^{2}-f^{2}\right)}\left(1-e^{i k x}\right) e^{-i \omega t}  \tag{7.6.33}\\
V= & =-\frac{\tau_{0}}{\rho \omega}\left[1+\frac{f^{2}}{\omega^{2}-f^{2}}\left(1-e^{i k x}\right)\right] e^{-i \omega t} \tag{7.6.34}
\end{align*}
$$

or, in real form,

$$
\begin{equation*}
\eta=-\frac{\tau_{0} f}{\rho g h \omega k} \sin (k x-\omega t) \tag{7.6.35}
\end{equation*}
$$

$$
\begin{align*}
U & =-\frac{\tau_{0} f}{\rho\left(\omega^{2}-f^{2}\right)}(\sin \omega t+\sin (k x-\omega t))  \tag{7.6.36}\\
V & =-\frac{\tau_{0}}{\rho \omega}\left[1+\frac{f^{2}}{\omega^{2}-f^{2}}(\cos \omega t-\cos (k x-\omega t))\right] \tag{7.6.37}
\end{align*}
$$

