Hydrology

Dissolved Organic Carbon (DOC) (mM) Dissolved Carbon 0.4 1.2 **0.8** 0 Tr/He ~35yrs 20 Bomb C-14 **40 60** 0 **Methane** Depth 80 DIC (m) 100 DOC 120 140 160 180 <mark>----</mark> 2 8 4 6 10

Inorganic (DIC) and Methane (mM)

Carbon Isotopes

- Inflow of young carbon
- Young carbon drives biochemistry
- Mixture of young and old carbon is not the result of pore water mixing, but mobilization of old organic carbon

Hydraulic Characteristics at Intensive Site

delta-¹⁸O

delta-²H

Depth-wise variation of stable water isotopic values at the filed site

Boro Rice Cultivation and Number of Wells

Pumping

River Exchange

Ponds

Model

Aquifer:

$$S\frac{dh_{a}}{dt} = (h_{f} - h_{a})K_{f}f_{f} + (h_{p} - h_{a})K_{p}f_{p} + (h_{r} - h_{a})K_{r}f_{r} + (h_{v} - h_{a})K_{v}f_{v} - q_{I} - f_{av}\alpha_{v}ET_{0}$$

Village:
$$S_{y} \frac{dh_{v}}{dt} = (h_{a} - h_{v})K_{v} - (1 - f_{av})\alpha_{v}ET_{0} + R$$

Field:
$$S_{y} \frac{dh_{f}}{dt} = \left(h_{a} - h_{f}\right)K_{f} - \alpha_{f}ET_{0} + R + \frac{q_{I}}{f_{f}}$$

Pond:

$$\frac{dh_p}{dt} = (h_a - h_p)K_p - \alpha_p ET_0 + R$$

		Case-A	Case-B	
Village ET	tree from	clay	aquifer	
K _f (1/d) [conducta	nce for field]	8.9x10-4	8.9x10-4	
K_v (1/d) [conductance for village]		6.3x10-6	9.1x10-4	
K _p (1/d) [conducta	ance for pond]	9.3x10-3	8.3x10-3	
K _r (1/d) [conductance for river]		7.7x10-2	8.7x10-2	
Objective Function	on <i>w/ pumping</i>	5.9x10-1	5.7x10-1	
Residence Time (yrs)	w/ pumping	19	13	
	w/o pumping	42	22	

Table 1. The estimated conductance parameter values when the storage coefficients are fixed, the respective objective functions (sum of square errors), and modeled residence times for the aquifer.

Case A: Village ET out of Clay									
	K _f	Kp	K _r K _v		CV				
K _f	1				0.11				
K _p	-0.18	1			0.10				
K _r	-0.28	0.29	1		0.11				
Kv	-0.30	0.01	0.09	1	5.45				
Case B: Village ET out of Aquifer									
	K _f	K _p K _r K _v		CV					
Κ _f	1				0.10				
Kp	-0.21	1			0.10				
K _r	-0.31	0.23	1		0.10				
K	_0 11	0.05	0 00	1	0.06				

		Case A	: Village	e ET ou	t of Clay		
	K _f	K _p	K _r	Kv	Sy	S	CV
K _f	1						0.15
K _p	-0.17	1					0.09
K _r	-0.31	0.04	1				0.10
Κ _v	-0.34	0.02	-0.22	1			0.77
Sy	-0.26	0.02	-0.29	0.92	1		0.14
S	-0.24	-0.07	0.81	-0.15	-0.19	1	0.13
	C	ase B:	Village	ET out o	of Aquife	ſ	
	K _f	K _p	K _r	Kv	Sy	S	CV
K _f	1						0.18
Kp	-0.11	1					0.09
K _r	-0.39	-0.06	1				0.11
Κ _v	-0.36	0.10	-0.07	1			0.08
Sγ	-0.36	0.11	-0.10	0.79	1		0.09
S	-0.26	-0.14	0.83	-0.16	-0.22	1	0.15

Transient Three-Dimensional Flow Model

Conclusions

- Arsenic concentrations are subject to change and irrigation pumping is sufficient to have significantly changed flow paths, drawing young water and chemicals into the aquifer.
- Geochemical parameters at our site are consistent with a scenario of concomitant arsenic release and organic carbon oxidation.
- Deeper wells have the potential to alleviate the problem, but could also become contaminated.

Tremendous disparity with US groundwater contamination problems

- In the developed world people don't drink seriously contaminated groundwater when contamination is known.
- Relative to US, efforts to understand the physical and chemical processes are not funded.

Need a serious scientific/engineering program

People

<u>MIT</u>

Chris Swartz Nicole Keon Winston Yu Jenny Jay Dan Brabander Peter Oates Harry Hemond BUET Borhan Badruzzaman Ashraf Ali Feroze Ahmed Khandaker Ashfaque

U. Cincinatti Shafik Islam Roger Beckie Volker Niedan

Future directions

• Arsenic in other regions in Asia Does Bangladesh indicate the future?

- Arsenic in agriculture and food chain
- Combined surface-water groundwater management pathogens vs. arsenic

Can these be done without a detailed hydro-bio-geo-chemical model?

MIT/BUET/NSF Arsenic Project Small N₂ glove bag at night