MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Civil and Environmental Engineering

1.731 Water Resource Systems

Lecture 15 Multiobjective Optimization and Utility

Oct. 31, 2006

Multiobjective problems

Benefits and costs are often incommensurate (measured in different units) are they may accrue to different parties (equity issues):

Examples:

Benefits

Hydropower output (MWhrs, \$)

Costs

Loss of species habitats or recreational opportunities (Units ???)

Reduced crop revenues for downstream farmers with less water (\$)

Sampling cost (\$)
a field monitoring
program (Units ??)
Multiobjective analysis recognizes this by revealing tradeoffs among different objectives.

Extension of the crop allocation example

Extend previous example by considering 2 objectives - maximization of crop revenue and minimization of pesticide concentration in groundwater:

Decision variables:

$$
\begin{aligned}
& \left.x_{1}=\text { mass of Crop } 1 \text { grown (tonnes }=10^{3} \mathrm{~kg}\right) \\
& \left.x_{2}=\text { mass of Crop } 2 \text { grown (tonnes }=10^{3} \mathrm{~kg}\right)
\end{aligned}
$$

Maximize $6 x_{1}+11 x_{2} \quad$ Crop revenue (\$)
x_{1}, x_{2}
Minimize $5 x_{1}+2 x_{2} \quad$ Pesticide concentration in groundwater (ppm) x_{1}, x_{2}
such that :

$$
\begin{aligned}
2 x_{1}+x_{2} & \leq 104 & & \text { Water constraint }\left(10^{3} \mathrm{~m}^{3} / \text { season }\right) \\
x_{1}+2 x_{2} & \leq 76 & & \text { Land constraint (ha) } \\
-x_{1}-x_{2} & \leq-25 & & \text { Minimum production constraint (tonnes) } \\
-x_{1} & \leq 0 & & x_{1} \text { non }- \text { negativity constraint } \\
-x_{2} & \leq 0 & & x_{2} \text { non }- \text { negativity constraint }
\end{aligned}
$$

All constraints and the feasible region are the same as before.
It is convenient to transform the problem so that both objectives are maximized. Call the negative of pesticide concentration "environmental quality":

$\underset{x_{1}, x_{2}}{\operatorname{Maximize}}$	$F_{1}\left(x_{1}, x_{2}\right)=6 x_{1}+11 x_{2}$	Crop revenue (\$)
Maximize x_{1}, x_{2}	$F_{2}\left(x_{1}, x_{2}\right)=-5 x_{1}-2 x_{2}$	Environmental quality (-ppm)

that :

$$
\begin{aligned}
2 x_{1}+x_{2} & \leq 104 & & \text { Water constraint }\left(10^{3} \mathrm{~m}^{3} / \text { season }\right) \\
x_{1}+2 x_{2} & \leq 76 & & \text { Land constraint (ha) } \\
-x_{1}-x_{2} & \leq-25 & & \text { Minimum production constraint (tonnes) } \\
-x_{1} & \leq 0 & & x_{1} \text { non }- \text { negativity constraint } \\
-x_{2} & \leq 0 & & x_{2} \text { non }- \text { negativity constraint }
\end{aligned}
$$

There is a tradeoff between the revenue and environmental quality objectives: As x_{1} and/or x_{2} increases crop revenue increases environmental quality decreases (and vice versa)

The nature of the tradeoff is revealed in plot of F_{2} vs F_{1} :

- Each feasible solution corresponds to a single point in the $F_{2}-F_{1}$ plane.
- If a solution is inferior it is possible to increase one of the objectives without decreasing the other.
- Non-inferior (Pareto optimal) solutions lie on the Pareto frontier which forms a boundary separating inferior and infeasible solutions.
- Different Pareto optimal solutions represent different tradeoffs between the two objectives - if one objective is increased by moving to another Pareto solution the other objective cannot increase (and usually decreases).

How can we identify the Pareto frontier in general?
Best alternative is usually to carry out a parametric analysis:

- Treat all but one objective ($F_{i}, i=, 2, \ldots N$) in an N-objective problem as constraints with specified right-hand values for F_{2}, \ldots, F_{N}.
- Maximize the remaining objective F_{1}. As the right-hand side values F_{2}, \ldots, F_{N} are changed the solutions trace out the Pareto frontier.

In the example, treat crop production objective as a constraint and maximize environmental quality F_{2} as a function of F_{1} :

$$
\begin{aligned}
& \underset{x_{1}, x_{2}}{\operatorname{Maximize}} \quad F_{2}\left(x_{1}, x_{2}\right)=-5 x_{1}-2 x_{2} \\
& \text { such that: }
\end{aligned}
$$

$$
\begin{aligned}
6 x_{1}+11 x_{2} & \geq F_{1} & & \text { Crop production must be at least } F_{1} \\
2 x_{1}+x_{2} & \leq 104 & & \text { Water constraint }\left(10^{3} \mathrm{~m}^{3} / \text { season }\right) \\
x_{1}+2 x_{2} & \leq 76 & & \text { Land constraint (ha) } \\
-x_{1}-x_{2} & \leq-25 & & \text { Minimum production constraint (tonnes) } \\
-x_{1} & \leq 0 & & x_{1} \text { non - negativity constraint } \\
-x_{2} & \leq 0 & & x_{2} \text { non - negativity constraint }
\end{aligned}
$$

The Pareto frontier can be obtained in GAMS by solving the above problem in a loop which varies F_{1} from 275 (the minimum feasible Pareto value) to 440 (the maximum feasible Pareto value).

Same result is obtained if we treat environmental quality as a constraint and maximize crop production F_{1} as a function of F_{2}.

Above concepts apply equally well to nonlinear and discrete multi-objective optimization problems.

Different types of tradeoffs:

Utility

Tradeoff curves do not tell us which Pareto optimal solution to adopt.
One approach for finding a single optimum solution is to identify a utility (or preference) function.
The utility function defines combinations of $F_{1}, F_{2}, \ldots, F_{N}$ values that a particular party (individual, group, etc.) finds equally acceptable. Contours of constant utility are called indifference curves.

Pareto curve can be viewed as an equality constraint in a new optimization problem where we seek to maximize utility. Then maximum utility solution lies at the point where the gradients to the utility function and Pareto frontier constraint point in the same direction.

Utility functions are difficult to measure, although economists have developed indirect ways to estimate them from surveys.

A typical example of a two-objective utility function $U\left(F_{1}, F_{2}\right)$ that may be fit to survey data is the Cobbs-Douglas function:
$U\left(F_{1}, F_{2}\right)=F_{1}^{\alpha} F_{2}^{\beta}$ where α and β are specified (or fit) non-negative coefficients
The dependence of the utility function on any given objective value is typically nonlinear.

Utility and Risk

For the crop allocation example, consider the dependence of utility on revenue F_{1} for fixed environmental quality F_{2}.

To examine effects of uncertain F_{1} expand $U\left(F_{1}\right)$ in a Taylor series around mean revenue $\overline{F_{1}}$:

$$
U\left(F_{1}\right)=U\left(\overline{F_{1}}\right)+\frac{\partial U}{\partial F_{1}}\left(F_{1}-\overline{F_{1}}\right)+\frac{1}{2} \frac{\partial^{2} U}{\partial F_{1}^{2}}\left(F_{1}-\overline{F_{1}}\right)^{2}+\mathrm{K}
$$

Mean of this expression is:

$$
\overline{U\left(F_{1}\right)}=U\left(\overline{F_{1}}\right)+\frac{1}{2} \frac{\partial^{2} U}{\partial F_{1}^{2}} \sigma_{F_{1}}^{2}+\mathrm{K} \text { where } \sigma_{F_{1}}^{2}=\text { variance of } F_{1}
$$

When there is no uncertainty: $\sigma_{F_{1}}^{2}=0 \rightarrow \overline{U\left(F_{1}\right)}=U\left(\overline{F_{1}}\right)$.
When there is uncertainty: $\quad \sigma_{F_{1}}^{2}>0 \rightarrow$ relationship between $\overline{U\left(F_{1}\right)}$ and $U\left(\overline{F_{1}}\right)$ depends on sign of $\partial^{2} U / \partial F_{1}^{2}$.

Three possibilities:

- Risk averse: $U\left(F_{1}\right)$ is concave, $\partial^{2} U / \partial F_{1}^{2}<0$ mean utility is lower when F_{1} is uncertain (risk lowers utility)
- Risk neutral: $U\left(F_{1}\right)$ is linear, $\quad \partial^{2} U / \partial F_{1}^{2}=0$ mean utility is the same when F_{1} is uncertain (risk has no effect on utility)
- Risk seeking: $U\left(F_{1}\right)$ is convex, $\partial^{2} U / \partial F_{1}^{2}>0$ mean utility is higher when F_{1} is uncertain (risk raises utility).

Utility is often a concave function of revenue (decision-maker is risk averse) for sufficiently large revenue.

In the crop allocation example this could reflect the fact that the marginal utility gained by having more revenue gradually decreases as environmental quality declines.

Example:

Consider a risk adverse farmer faced with uncertain revenue because of uncertainty in the farm water supply.
F_{1} has 2 possible values $\overline{F_{1}} \pm \delta F_{1}$, each with probability $=0.5$.

Suppose the (concave) utility function for this risk adverse farmer is $U\left(F_{1}\right)=\ln \left(F_{1}\right)$. The farmer can sell a crop option for a price P before the growing season starts. The option guarantees the farmer revenue P. The actual value of the crop is either $\overline{F_{1}}+\delta F_{1}$ or $\overline{F_{1}}-\delta F_{1}$, depending on uncertain water availability. What price is the farmer willing to accept for the option?

Suppose $\overline{F_{1}}=\$ 1000, \delta F_{1}=\$ 200$
If farmer sells the option for price P the mean (certain) utility is

$$
\overline{U\left(F_{1}\right)}=\ln (P)
$$

If farmer does not sell the option and accepts risk the mean utility is:

$$
\overline{U\left(F_{1}\right)}=0.5 \ln \left(\overline{F_{1}}+\delta F\right)+0.5 \ln \left(\overline{F_{1}}-\delta F\right)=3.55+3.34=6.89
$$

Equate these two mean utilities and solve for P :

$$
P=\exp (6.89)=\$ 982.40
$$

So the farmer is willing to sell the crop option for $P=\$ 982.40$ rather to obtain expected revenue of $\$ 1000$. The risk premium is $\$ 17.60$.

If the farmer is risk neutral he would require that $P=\$ 1000$ and the risk premium would be zero.

