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Background 
Environmental models increasing in size and complexity 

• In many nonlinear problems (e.g. climate, atmospheric, oceanographic analysis, 
subsurface transport, etc.) small-scale variability can have large scale consequences 

• This creates need to resolve large range of time and space scales (fine grids, extensive 
coverage) 

•  
Data sets are also increasing in size and diversity (new in situ and remote sensing instruments, 
better communications, etc.). 
 
Need for automated methods to merge model predictions and measurements → data 
assimilation 
 
Goal is to provide accurate descriptions of environmental conditions -- past, present, and future.  
Important example: numerical weather prediction  
 
Data Assimilation as an Optimization Problem 
Basic objective is to obtain a physically consistent estimate of uncertain environmental variables 
-- fit model predictions to data. 
 
Similar to least-squares problem solved with Gauss-Newton, except problem size (perhaps 106 
unknowns, 107 measurements) requires a special approach. 
 
State equation (environmental model) describes physical system. 
System is characterized by a very large spatially/temporally discretized state vector xt:  

),(1 αtt xgx =+     initial state: )(0 αx    1,...,0 −= Tt  = model time index 
α  is uncertain parameter vector  

 
Measurement equation describes how measurements assembled in measurement vector zt are 
related to state: 
  ττττ vxhz t += ][ )( M,...,1=τ  = measurement index 

  is uncertain measurement error vector τv
 )(τt  = model time step t corresponding to measurement τ  
 
Procedure: Find α  that is most consistent with measurements and prior information. 
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Optimization problem: Best α  minimizes generalized least squares objective function: 
 
  

Prior information 
(regularization) term 

Measurement error 
term 
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 Such that: 
 ),(1 αttt xgx =+  1,...,0 −= Tt

)
 

 (0 αγ=x  
Indicial notation is used for matrix and vector products. 
 
This generalized version of the least-squares objective includes a regularization term that 
penalizes deviations of α  from a specified first guess parameter value α . 
 
State equation is a differential constraint similar to those considered in Lecture 11.  However, 
imbedding or response matrix methods described in Lecture 11 are not feasible for very large 
problems. 
 
Variational/Adjoint Solutions 
Very large nonlinear least-squares problems (e.g. data assimilation problems) are often solved 
with gradient-based quasi-Newton (e.g. BFGS) or conjugate-gradient methods. 
 
Key task in such iterative solution methods is computation of the objective function gradient 
vector αα ddF /)(  at the current iterate .  kαα =
 
Find gradient by using a variational approach. Incorporate state equation equality constraint 
and its initial condition with Lagrange multipliers Ttt ,...,0; =λ . 
 
Minimization of the Lagrange-augmented objective is the same as minimization of F(α) since 
Lagrange multiplier term is identically zero.   
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Here , , and . kαα = k

tt xx = k
tt λλ =
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Evaluate variation (differential) of objective at current iteration αk  (generally not a minimum): 
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The differentials of the state as well as the parameter appear since the state depends indirectly on 
the parameter through the state equation and its initial condition. 
 
In order to identify the desired gradient collect coefficients of each differential: 
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Here   selects measurement times included in the model time step sum. 
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This gives: 
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We seek the total derivative αα ddF /)(  rather than the partial derivative αα ∂∂ /)(F  with xt 

fixed (since we wish to account for the dependence of dxt on dα). 
 
To isolate the effect of dα select the unknown λt so the coefficient of dxt  is zero. 
This λt satisfies the following adjoint equation: 
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This difference equation is solved backward in time (t = T-1, …, 1, 0), from the specified 
terminal condition 0=Tλ  to the initial value 0λ , much like the dynamic programming 
backward recursion. 
 
The measurement residual term in brackets acts as a forcing for the adjoint equation. 

The equation forcing
x
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When λt satisfies the adjoint equation the desired objective function gradient is: 
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Start search with αα = . 
On iteration k with  carry out following steps: kαα =

1. Solve state equation from  t = 0, …, T-1, starting with initial condition )(0 αγ=x . 
2. Solve adjoint equation from  t = T-1, …, 0, starting with terminal condition 0=Tλ . 
3. Compute objective function gradient from  and tx tλ  sequences 
4. Take next search step 
5. If not converged replace k with k + 1 and return to 1. Otherwise, exit. 

 
This approach requires 2 model evaluations: 
 1 forward solution of the state equation 
 1 backward solution of the adjoint equation.  
 
By comparison, traditional finite difference evaluation requires N+1 model evaluations 
N = number of elements in xt = O(106). 
 
Special Case: Uncertain Initial Condition 
The gradient equation simplifies considerably when the only uncertain input to be estimated is 
the initial condition, so ααγ == )(0x : 
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When the prior weighting is small or α  is near α  the objective gradient is approximately equal 
to 0λ− . 

 4



 
Example: 
Scalar linear state equation (AR1 process) with uncertain initial condition: 
 ttttt uxxgx +==+ βα ),(1  1,...,0 −= Tt  
 ααγ == )(0x  

tu and ,, βα  are given. 
 
Measurement equation: 
  τττ vxz t += )(
 
Weights:  
 1, == ατ WWz  
 
Take 3 measurements  at times 321 ,, zzz *3)3(*,2)2(*,)1( tttttt === , where t* =  (1 - β)-1. 
 
Start search with αα = . 
On iteration k with  carry out following steps: kαα =
 

1. Solve state equation for specified α=0x : 

   ∑
=

−+=
t

j
j

jtt
t ux

1
βαβ Tt ,...,0=  

 
2. Solve adjoint equation for 0...,,1−= Tt :    
 0          )()()( *33*3,*22*2,*1*,1 =−+−+−+= + Tttttttttttt xzxzxz λδδδβλλ  
 
3.Compute objective function gradient: 
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4. Take next search step 
 
5. If not converged replace k with k + 1 and return to 1. Otherwise, exit. 
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