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Problem Formulation: 
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Strict equality constraints  
   Inequality constraints 
 
Basic components: 

• n decision variables   ],...,,[ 21 ni xxxxx =→ , collectively define a decision strategy. 
• Scalar objective function  measures performance of decision 

strategy 
 ),...,,()( 21 nxxxFxF →

• r equality constraints gi(x), i=1,…, r 
• n-r inequality constraints gi(x), i= r + 1,…,m 

 
Note: 

• Minimization of F(x) is maximization of –F(x) 
• g(x) > 0 is same as –g(x) < 0 

 
Feasible region F :  Set of x that satisfies constraints (depends only on gi(x)). 
 
Discrete optimization: F  consists of a finite number of feasible solutions 
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F  consists of 7 discrete x1 and x2 values, 
indicated by circles 
 

x1

F F 

F F F 

F F 

 
 
 
 
 
 
 
 
 
 

g1(x) = -1 for (x1, x2) = {AA, AB, AC, BA, BB, CB, CC} 
g1(x) = +1 otherwise 

 

 1



Continuous (non-discrete) optimization: F  consists of an infinite number of feasible solutions 
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Solving Optimization Problems 
 
Objective in optimization is to find the best decision strategy among all feasible possibilities: 
 →   We seek a global optimum 
 
Most common way to find optimum for large problems is to use an iterative search: 
 
 
 
 
 
 
 
 
 
 
 
 
 
An iterative search algorithm needs: 

• A method for selecting an initial feasible solution - Can be formulated as a secondary 
optimization problem 

• A stopping criterion that detects following: 
1. No feasible solution – no way to satisfy all constraints 
2. Optimal solution found – satisfies optimality conditions 
3. Objective function unbounded over feasible region  - Objective can be infinite 

within feasible region. 

F  is bounded by curves corresponding 
to gi(x) = 0. 
Interior of F  is set of points that satisfy 
gi(x) < 0. 
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• A solution improvement mechanism – challenging for nonlinear problems, often based 
 on optimality conditions, sometimes ad hoc. 

 
 
Types of search procedures: 

• Exhaustive Searches - For discrete problems: 
Move methodically through all (or sometimes a subset) of the feasible solutions to 
determine which has best objective value. 

• Selective Searches – For continuous problems: 
Use information from current and past candidate solutions (e.g.  objective value or 
objective gradient) to determine next feasible solution.  

 
For now, focus on continuous problems and selective searches. 
 
Global vs. Local Maxima for Continuous Problems 
In practice, it is much easier to find local optima: 

x* is a local maximum if F(x*) ≥ F(x) for all feasible x near x* 
x* is a local minimum if F(x*) ≤ F(x) for all feasible x near x* 

 
Two key questions: 

1. When is a local optimum also global optimum? 
2. How do we know when a particular candidate solution x* is a local optimum? 

 
What can we say about global optimality based on local properties (near x*) ? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Global optima cannot be 
identified from local properties ! 
Except in certain special cases 

Feasible Region 

F(x) 

Local max 

Nonunique local min 

Global max 
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Global min 

     dF(x)/dx=0 
    dF(x)/dx ≠ 0 
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