6 Initial Mixing

Introduction Integral Analysis Dimensional Analysis Multi-port Diffusers Gravitational spreading, intrusion & mixing Multi-port Diffusers in Shallow Water Buoyant Surface Jets Combined Near and Far Field Analysis

Submerged Discharge

Mixing by turbulent entrainment rather than exchange Dilution • $S = Q/Q_0$ • $S = (C_0 - C_b) / (C - C_b)$ Mixing zones Hydrodynamic Regulatory

Dilution a solution to pollution?

Biodegradable contaminant?
 High ambient concentration of contaminant?

Pure Jet

Momentum driven Bell-shaped velocity distribution (in jet) Irrotational flow (entrainment field) Properties ■ b ~ x ■ U ~ X⁻¹ Q ~ ub² ~ x

Buoyant Jet

Buoyancy driven

- Temperature
- Dissolved/Suspended solids
- Bell-shaped velocity
 & scalar distributions

Linear spread

Finite initial size (ZOFE)

Equation of State (Gill, 1982)

 $\rho = \rho(T) + \Delta \rho(S) + \Delta \rho(TSS)$

$$\rho(T) = 1000 \left[1 - \frac{T + 288.9414}{508929.2(T + 68.12963)} (T - 3.9863)^2 \right]$$
$$\Delta \rho(S) = AS + BS^{3/2} + CS^2$$

 $A = 0.824493 - 4.0899x10^{-3}T + 7.6438x10^{-5}T^{2} - 8.2467x10^{-7}T^{3} + 5.3875x10^{-9}T$ $B = -5.72466x10^{-3} + 1.0227x10^{-4}T - 1.6546x10^{-6}T^{2}$ $C = 4.8314x10^{-4}$

$$\Delta \rho(TSS) = TSS \left[1 - \frac{1}{SG} \right] x 10^{-3}$$

 $\rho = kg/m^3$, T in °C, S in PSU (g/kg), TSS in mg/L

Model Types

Computational Fluid Dynamics (3-D)
 Integral Analysis (1-D)
 Dimensional Analysis (0-D)

Integral Analysis: Self-Similarity

Integrated Fluxes

Volume
$$Q \cong \int_{-\infty}^{\infty} \widetilde{u} dA = \int_{0}^{\infty} \widetilde{u}_{c} f 2\pi r dr = 2\pi I_{1} \widetilde{u}_{c} b^{2}$$

Momentum* $M \cong \int \widetilde{u}^2 dA = \int \widetilde{u}_c^2 f^2 2\pi r dr = 2\pi I_2 \widetilde{u}_c^2 b^2$ $-\infty$

Mass
$$J \cong \int_{-\infty}^{\infty} \widetilde{u} \Delta c dA = \int_{0}^{\infty} \widetilde{u}_{c} \Delta c fg 2\pi r dr = 2\pi I 3 \widetilde{u}_{c} \Delta_{c} b^{2}$$

Neglects turbulent momentum fluxes

Conservation Statements

Continuity	$\frac{dQ}{d\tilde{x}} = 2\pi b v_e = 2\pi b \alpha \tilde{u}_c$
Longitudinal Momentum	$\frac{dM}{d\tilde{x}} = 2\pi \int_{0}^{\infty} \Delta \rho g \sin\theta r dr = 2\pi I_{4} \Delta \rho g b^{2} \sin\theta$
Horizontal Momentum	$\frac{d(M\cos\theta)}{d\widetilde{x}} = 0$
Contaminant mass	$\frac{dJ}{d\tilde{x}} = 0$
Geometry 1	$\frac{dx}{d\tilde{x}} = \cos\theta$
Geometry 2	$\frac{dy}{d\tilde{x}} = \sin\theta$

Solution Technique

A

Initial Value Problem6 equations in 6 unknowns

Results

Output as function of

Densimetric Froude Number $F_o = \frac{u_o}{\sqrt{g(\Delta \rho_o / \rho)D_o}}$

Dimensionless x / D_o Distance, Height z / D_o

Limiting Conditions $F_o = \infty$ Pure jet

 $F_o = 1$ Pure plume

Shirazi & Davis, 1974

Figure by MIT OCW.

Example Calculations (WE 6-1)

 $O_0 = 0.00125 \text{ m}^3/\text{s}$ $D_{0} = 0.1 \text{ m}$ $\Delta \rho_0 / \rho = 0.025$ $= Q_0 / (\pi D^2 / 4) = 0.16 \text{m/s}$ $\langle F_0 = u_0 / (\Delta \rho_0 g / \rho D)^{0.5} = 1$ $\langle z/D_0 = 70 \rangle$ $(c/c_0 = 0.008)$

Shirazi & Davis, 1974

Figure by MIT OCW.

Shirazi & Davis, 1974

Example Calculations (cont'd)

	Base Case	Increased Momentum	Increased Flow
D _o	0.1	0.05	0.1
Q _o	0.00125	0.00125	0.0025
Uo	0.16	0.64	0.032
$\Delta \rho_o / \rho$	0.025	0.025	0.0125
Fo	1	5.7	2.8
z/D _o	70	140	70
c/c _o	0.008	0.008	0.016

In deep water behavior depends mainly on buoyancy—not momentum, flow rate, port size or orientation

Shirazi & Davis, 1974

Figure by MIT OCW.

Shirazi & Davis, 1974

Dimensional Analysis

 Identify important independent and dependent variables
 Arrange in dimensionally consistent manner

Determine coefficients empirically

Buckingham II Theorem

- Number of dimensionless parameters equals number of independent plus dependent variables minus number of dimensions used to describe these variables
- Example: $D = \frac{1}{2} gt^2$
 - 3 variables (g, t, D)
 - 2 dimensions (length, time)
 - 1 dimensionless variable (D/gt²)
- ◆ "Empirical" coefficient (1/2)

Axi-symmetric Plume

Neglect ambient current, stratification
 Assume deep water (initial momentum, flow rate, nozzle size, discharge angle less important than buoyancy)
 Kinematic buoyancy flux

 B₀ = Q₀ gΔρ₀/ρ [L⁴T⁻³)

Axi-symmetric Plume (cont'd)

 Q = f(B, z)
 3 variables - 2 dimensions = 1 nondimensional parameter (c₁)

Axi-symmetric Plume (cont'd)

 $Q \sim B_o^{\ \alpha} z^{\beta}$

 $\frac{L^3}{T} = \frac{L^{4\alpha}}{T^{3\alpha}} L^{\beta}$

 $3 = 4\alpha + \beta$

 $1 = 3\alpha$

 $\therefore \alpha = 1/3, \beta = 5/3$

 $S = Q / Q_o$ $S_c = \frac{c_1 B_o^{1/3} z^{5/3}}{Q_o}$

 $c_1 \cong 0.1$

Integral vs Dim Anal (WE 6-2)

Integral vs Dim Anal (cont'd)

Figure by MIT OCW.

Blockage at surface (or trap elevation)

Ambient Stratification

Stratification frequency N

Plume traps at level of neutral buoyancy with reduced dilution
 h_t = 2.8B_o^{1/4}/N^{3/4}
 S_m = 0.9 B_o^{3/4}/Q_oN^{5/4}

Ambient Current

 ◆ Deflects plume downstream
 ◆ Augments dilution if strong
 ◆ S_m = 0.32u_aH²/Q_o
 ◆ X_s=0.3Q_o(g∆p_o/p)/u_a³

Dense plumes

♦ Typical applications: Cold water from LNG terminals Brine from desal plants, sol'n mining of salt domes $h_t = 2.3 M_o^{3/4} / B_o^{1/2}$ $S_{m} = 2.8 M_{o}^{5/4} / Q_{o} B_{o}^{1/2}$

Example: solution mining of salt domes

- Strategic Petroleum
 Reserve
 - Dates from 1970's
 - ~700x10⁶ bbl stored in 4 domes in LA & TX
 - Salinity gradients in GoM confuse shrimp
- Also used for
 - Salt production
 - Compressed gas storage
 - Waste isolation

Multi-phase Plumes

Bubble plumes

- Reservoir
 - destratification
- Aeration
- Ice prevention
- Pollutant containment
- Droplet plumes
 - Deep oil spills
- Sediment plumes
 - Dredged mat'l disposal
 - CO₂ ocean storage

Figure by MIT OCW.

Deep Oil-well Blowout

CO₂Sequestration

Adapted from Heroz et al. (2000).

Figure by MIT OCW.

What are gas hydrates?

"Filled ice"

Example: methane hydrate

Cage structures of gas hydrates

$$CO_2 + nH_2O \longleftrightarrow_{T,P} CO_2 \cdot nH_2O$$

 $n \approx 5.75$

 $\rho_h = 1100 - 1140 \text{ kg/m}^3$

CO₂/seawater phase diagram

Figure by MIT OCW.

Laboratory studies (Oak Ridge National Lab)

West et al., 2003; Lee et al 2003

Two-phase plume model

(100 kg/s CO₂, 1 cm diameter spheres, release depth 800 m, $Q_c/Q_w = \lambda = 0.49$)

Multi-port diffusers Construction: Cut and cover Bored tunnel Ports ■ *l* ~ 0.3H (or 0.3 h) Often 2 or more per riser ♦ Line source approx. h_τ • $q_0 = Q_0/L, b_0 = B_0/L$ No current; no strat $S_m = 0.42 H b_0^{1/3} / q_0$ No current; strat • $S_m = 0.97 b_0^{2/3} / q_0 N$ Current; strat • $S_m = 2.2 u_a^{1/2} b_o^{1/2} / N q_o$

Single vs Multiport (WE 6-3)

Boston Outfall Diffuser Length L = 2000 m • No ports $N_p = 440$ • Flow rate $Q_0 = 20 \text{ m}^3/\text{s}$ Water depth H = 30 m • Stratification frequency $N^2 = \left| \frac{g \partial \rho}{\partial z} \right|$

• $N^2 = (9.8)(25-22)/(1025)(30) = 0.001 \text{ s}^{-2}$

MASSACHUSETTS WATER RESOURCES AUTHORITY FIGURE 1 CROSS-SECTION OF SEAWATER DENSITY ALONG NORTHERN TRANSECT (Units of Sigma-1): 8/12/87 AM

Single vs Multiport (cont'd)

As single port $Q_0 = 20/440 = 0.045 \text{ m}^3/\text{s}$ $B_0 = 0.045*9.8*0.025 = 0.011 \text{ m}^4/\text{s}^3$ • $h_t = 2.8B_0^{1/4}/N^{3/4} = 12 \text{ m}$ • $\ell = L/N_p = 2000/440 = 4.5 \text{ m}$ • $\ell > 0.3 \text{ h}_t = > \text{ no merging}$ $S_{\rm m} = 0.9 \ B_0^{3/4}/Q_0^{10} N^{5/4} =$ $0.9(0.011)^{3/4}/(0.045)(0.0013)^{5/8} = 51$

Single vs Multi-port (cont'd)

As multi-port diffuser (line source of buoyancy)

- $q_o = 20/2000 = 0.01 \text{ m}^2/\text{s}$
- **b**_o = $0.01 \times 0.025 \times 9.8 = 0.0025 \text{ m}^3/\text{s}^3$
- $h_t = 2b_0^{1/3}/N = 2(0.0025)^{1/3}/(0.001)^{\frac{1}{2}} = 9 \text{ m}$
- $S_m = 0.97 b_o^{2/3}/q_o N =$ 0.97(0.0025)^{2/3}/(0.01)(0.001)^{1/2} = 56

Numerical modeling of sewage outfalls?

Numerical modeling of sewage outfalls?

Gravitational spreading, intrusion, mixing

Neutrally buoyant jet in stratification

Wachusetts Reservoir Algae

 Occasional taste and odor problems

- Synura (left)
- Chrysosophaerella
- Algal locations
 - Hypolimnion
 - Metalimnion
 - Under ice
- Conventional treatment (surface algae) with CuSO₄ from boat
- How to efficiently treat (place algaecide in proper stratum) under ice & at depth?

Layout of Treatment System (potential system being discussed)

Figure by MIT OCW.

CDM, 2005

Mid-Depth Air Driven Circulator

CDM, 2005

Application at Depth

Length, thickness and dilution (hence required operation time) depend on reservoir stratification and discharge momentum

Elevation view

Plan view

Multi-port diffusers in shallow water

Buoyant surface discharges

• Lengths $\sim F_{o}' \ell_{o}$

Combined near and far field analysis (accounting for background build-up)

Total dilution less than either near field or far field dilution and controlled by the smaller of the two

Example

- Far field dilution
 S_F = 50 to 100
 Near Field
 dilution S_N = 50
 to 100
- Total Dilution $S_T = 25$ to 33 to 50

MWRA, 1999