Resource-efficient building materials for a sustainable built environment

0

John E. Fernández

Container City: India Wharf, London, UK

^aAll alloying proportions given in terms of percentage weight. ^bAluminum series 1000-7000

Figure by MIT OCW.

Figure by MIT OCW.

metal foams

source:

Low, M. (2005) MFA of concrete in the US. MSBT thesis, MIT: pg. 16

Adapted from:

van Oss, Hendrik G. and Padovani, Amy C.

Global CO2 emissions from cement manufacturing production

excavation and erosion.

TMR (Total Material Requirement) = DMI+Domestic Hidden Flows+Foreign Hidden Flows

DMI (Direct Material Input) = Domestic Extraction+Imports

NAS (Net Additions to Stock) = DMI-DPO-Exports

TDO (Total Domestic Output) = DPO+Domestic Hidden Flows

DPO (Domestic Processed Output) = DMI-Net Additions to Stock-Exports

Figure by MIT OCW.

source: Mathews et al. (2000) The Weight of Nations: material outflows from industrial economies. World Resources Institute, Washington DC: pg. 14

Material Resources

5%

Percentage of Total (weight)

Japan Copper cycle: One Year Stocks and Flows, 1990s

Zambia's Copper Cycle: One Year Stocks and Flows, 1994

China's Copper Cycle: One Year Stocks and Flows, 1994

2002 Estimated In–Use Copper Stocks in Beijing—3D View *Source*: T. Wang and T.E. Graedel, unpublished research, Center for Industrial Ecology, Yale University, New Haven, CT, 2005.

$I = P \times A \times T$

M = resource unit service

Type I

Source: Fernandez

Type II

Type III

 $E_i = Energy input (solar radiation)$

Consumption attributes of contemporary buildings

Temporal

- Actual service lifetimes are uncertain (shorter or longer than intended)
- Buildings often outlast the firms that build them
- Buildings are one of the very few human artifacts that can span generations

Spatial

- Buildings are immobile over lifetime
- Materials and processes (energy) converge to site
- Materials (wastes or "residues") are dissipated from site

Physical

- Buildings (cities and infrastructure) constitute the largest single stock type
- Each building is a "prototype"
- Buildings are meta-systems composed of complex semi-autonomous systems (with distinct lifecycles)

Comparative analysis of resource requirements

1.Brick and concrete masonry block wall

2.Glass and aluminum curtainwall

3.Precast concrete panel and structural steel stud wall

4.Structural straw bale, wood stud and exterior finish plaster construction

Data sources: US EPA Lifecycle Methods (1993) SETAC (1993) BEES (2000) ISO 1401 (1998) Scientific Certification Systems (1995) Keoleian, G. (2001)

CES Materials Selector 4.5 (Beta version)

Figure by MIT OCW.

Wall systems

* Primary energy includes pre-use phase extraction, manufacturing, fabrication, assembly, and transportation.

Transportation - of workers and equipment - to and from the site represents the largest proportion of construction energy use for every material system and a substantial proportion of emissions.

(a) Average Construction Energy for Wood, Steel and Concrete Assemblies

Low energy buildings and resource content

(whole building)

Increased energy efficiency continually recalibrates proportion of *pre-use* to *use phase* energy investment.

Figure by MIT OCW.

Keoleian, G. et al. 2001. Life-cycle energy, costs, and strategies for improving a single-family house. *JIE* Vol.4, No.2: pp. 135-156.

Strategies

Pre-Use

• Integrated delivery (construction) including premanufactured assemblies for dematerialized built environment (renewable and non renewable).

Issues: employment, quality, material flow control, waste control and reuse, transportation energy in construction, firm MFA analysis, product LCA.

Use

- Extended Producer Responsibility (EPR) or better yet Extended Industry Responsibility (EIR): product LCA
- Material reclamation, recycle, downcycle.
- Comfort/Carbon Tax

Post-Use

• "Cities are the mines of the future.", Jane Jacobs

Are we any closer to a Type III ecology?

Ecologies of Construction

Metabolism: the consumption of resources for the purpose of providing a unit of service.

Industrial ecology as steward of tools of analysis for resource consumption

 $[M_i, E_i] = [M_o, E_o] + [A.S.]$

Ordnance Plant

Arden Hills, Minnesota

Built: 1930s

Dismantled: 2002

Materials recovered:

20,000 maple tongue and groove flooring,

500,000 board feet of structural timber

Cost of disassembly: \$183,000

Cost of demo/landfilling: \$600,000

Sears Catalog Warehouse Center

Chicago, Illinois

Built: 1906

Demolished: 1992-1994 (full 2 yrs of demolition)

Size: 9 story, 3 million sq. ft.

Materials recovered:

7.5 million board feet timber,

23 million bricks

Site recovered for housing

The photographs on this and the following pages were removed for copyright reasons.

Murray Grove Apartments

London, England

Cartwright Pickard Architects

(Yorkon Building Modules)

Built: completed 2001

Size: 30 apartments, 5 stories

On-site construction: 2 weeks

Overall cost reduction: 10% (affordable housing contract)

Premanufactured building modules

Yorkon Foreman's

Premanufactured components for buildings

Container City India Wharf, London, UK

Materials cycles in construction

Scope

The analysis of the metabolism of the city of New Orleans may provide a unique understanding of the relationship between anthropogenic structures of industry and the built environment and the natural ecology of the lower Mississippi Delta.

- 1. System boundary
 - i. Municipal (political)
 - ii. Regional (geographic, ecological, etc.)
- 2. Physical accounting
 - i. Listing of entities to 'track' (key resources)
 - ii. Data sources