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Planets as Heat Engines 

In the earliest days of the solar system, all the terrestrial planets and 
moons were exceedingly hot – most were probably entirely molten. Today 
they are much cooler, although only the internal temperature of the earth is 
well known. Sparse data are available for the mantles of the moon, Venus 
and Mars, largely from the chemistry of igneous rocks now at the surface. 

Rocks within the interiors of planets also contain various amounts of 
radioactive elements, mainly uranium, thorium and potassium. The core 
probably contains rather little in the way of these heat producing elements, 
while the mantle contains much more. On earth, the crust is highly enriched 
in radiogenic elements compared to the mantle. Heat is also generated by 
freezing of the core, through the heat needed to turn fluid outer core into 
solid inner core. The moon and Mars probably have solid cores. The states 
of the cores of Mercury and Venus are unknown, although there are a few 
data that bear on the question (magnetic field strength). 
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http://eqseis.geosc.psu.edu/~cammon/HTML/Classes 
/IntroQuakes/Notes/Images_specific/Geotherm.gif 

Mechanisms for Planetary Heat Loss 
Conduction (diffusion of heat through material) 
Convection (advection is heat carried by movement of material, 

called convection when movement is thermally driven) 
Radiation (loss of heat through generation of electromagnetic 

radiation at planetary surface) 

Within planetary interiors, heat transfer occurs by convection and by 
convection. Which is more efficient, and which operates where? 

First, define heat flow (q): the amount of heat (joules) per unit time 
(seconds) through a unit area of surface (square meters). Heat flow in the 
earth is measured in units of mW/m2, noting that a watt=joule/sec. Typical 
values for the outermost layer of the earth are between about q=40 mW/m2 

and q=100 mW/m2. 

Courtesy of Prof. Charles J. Ammon, Penn State University. Used with permission.

http://eqseis.geosc.psu.edu/~cammon/HTML/Classes
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Conductive heat flow is always proportional to the thermal gradient in a 
material, with a proportionality constant called the thermal conductivity, K, 
measured in units of W/mK: 

qconductive = K (∂T/∂z) 

Typical values for the thermal gradient in crustal rocks are between 
10°C/km and 50°C/km. 

Convective heat flow is computed as the velocity of the material moving 
through a unit surface area, v, times the temperature of the material times the 
heat capacity of the material. Heat capacity per unit volume is equal to the 
heat capacity per unit mass (Cp) times the material density, ρ . Thus: 

qconvective = v T ρ Cp 

In general, convective heat loss in large bodies is much more efficient than 
conductive heat loss, especially over distances of more than 100 km. This is 
small compared to the radius of most terrestrial bodies, so it is difficult for 
the planets to cool much by conduction. But, in order for convection to 
occur, the interior of the planet has to be soft and weak enough that the “heat 
engine” of the planet can drive ductile flow within the interior. Planets are 
not hot enough in the upper tens to hundreds of kilometers for ductile flow 
to occur, which needs temperatures somewhere above 1300°C even in the 
shallow mantle. This means that all of the terrestrial planets have a strong 
outer shell that does not deform in a ductile fashion (it could have faults). 
Depending on the temperature of the planetary interior, there may or may 
not be a ductile region in the deeper part of the planet’s mantle. This strong 
outer layer is called the lithosphere (lithos means rock). It is not the same as 
the crust. It usually includes all of the planetary crust and some of the 
uppermost mantle. In the earth, the tectonic plates consist of lithosphere. 

Mantle convection is driven by the density inversion in the mantle. All 
things being equal, hot material is less dense than cold material. Thus 
deeper and hotter parts of the mantle are more buoyant and tend to rise, 
while shallower and colder parts of the mantle are less buoyant and tend to 
sink. Although the details are a bit more complicated, this is the basic idea 
behind thermal convection. 



28 

http://www.lpi.usra.edu/science/kiefer/Research/convect4FS.gif 

Math for Heat Conduction 

Courtesy of Walter S. Kiefer, Lunar and Planetary Institute. Used with permission.

The mantle convects slowly moving a few centimeters in a year. The core convects more quickly, moving 
kilometers in a year. The atmosphere convects vigorously, powered by incoming heat from the Sun. 

Figure by MIT OpenCourseWare.

http://www.lpi.usra.edu/science/kiefer/Research/convect4FS.gif


29 

Heat conduction, in one dimension, is governed by a partial differential 
equation that has derivatives in time and depth. We are going to ignore the 
effect of radiogenic heat production for our class work, although it can be 
very important in crustal rocks. 

Consider a layer of material conducting heat, with a heat flow out the top of 
q and a heat flow in the bottom of q+dq. 

The total heat in the box, Q, is equal to the temperature in the box, T, times 
the heat capacity per unit volume, ρCp, times the volume (A dz): 

Q = T ρCp Adz 

Because everything is a constant except T, the rate of change of heat in the 
box is just: 

(∂Q/∂t) = (∂T/∂t) ρCp Adz 

The rate of change of heat in the box is also equal to the heat flowing into 
the bottom of the box, (q+dq)A, minus the rate of heat flowing out of the 
top of the box, qA. So: 

(∂Q/∂t) = (q+dq)A - qA 

Setting the right hand sides of these equations equal we get: 

(∂T/∂t) ρCp Adz = (q+dq)A – qA 

or: 
(∂T/∂t) ρCp = [(q+dq) – q]/dz = ∂q/∂z 
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Substituting the relationship between conductive heat flow, thermal 
conductivity and heat flow: 

q = K (∂T/∂z) 

gives: 

(∂T/∂t) ρCp = ∂/∂z [K (∂T/∂z)] = K (∂2T/∂z2) 

or: 

(∂T/∂t) = κ (∂2T/∂z2) 

where κ= K/ρCp is the thermal diffusivity of the material, in units of m2/s. 
This is the general equation for the conduction of heat in a stationary 
medium without heat production and with uniform thermal diffusivity. In 
the earth’s crust and mantle, a ballpark value for thermal diffusivity is κ= 
10-6 m2/s, at least enough to make some approximate calculations. 

A quick way of estimating how far, ζ, a significant change in temperature 
can propagate in a given amount of time, τ , can be estimated by writing: 

(dT/τ) = κ (dT/ζ2) or ζ = (κτ)1/2 

putting in a variety of values for time (τ) and κ = 10-6 m2/s gives 
characteristic conduction distances of: 

τ ζ 
1 m.y. 5.6 km 
100 m.y. 56 km 
10 Gy 560 km 

Since the planets are about 4.5 Gy old, cooling via thermal conduction can 
not have penetrated more than a few hundred kilometers downward from the 
surface. This means that if the planetary interiors have cooled at greater 
depth, they must have done so by convection. If convection were to be 
inhibited in the terrestrial planets, they could not cool significantly and 
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would remain near the same temperature, at least on the timescale of the 
solar system. 

Steady-State Conductive Solution 
One simple solution to the heat conduction equation, which is obvious from 
inspection, and is the “steady-state” or “equilibrium” solution when ∂T/∂t = 
0. This gives: 

(∂T/∂t) = 0 = κ (∂2T/∂z2) 

or: 

T = To + bz 

The steady-state solution is just a linear function of z and corresponds to a 
heat flow q = Kb. For now, we can make a table of the time it takes for a 
given thickness of rock (mantle) to approach a steady-state linear geotherm 
if we don’t perturb it in any way except to let it cool conductively. 

time to steady-state layer thickness

1 m.y. 3 km

100 m.y. 30 km

10 Gy 300 km


The Error Function 
We will use the conduction equation in a few more classes to relate 
lithospheric thickness to time and temperature so we might as well right 
down one very useful time-dependent solution, called the error function and 
written erf(y). 
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This function has the property that erf(0)=0, erf(infinity)=1, and it is a 
solution to the heat conduction equation. We will leave it to the homework 
to show that it is a solution and to calculate the rate of conductive cooling of 
a planetary surface. Later on we will use this expression to calculate the 
thermal behavior of the oceanic lithosphere on earth. 
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