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Convective Heat Flow 
In order compute convective heat flow, averaged over the surface extent of a 
convecting cell, we need to calculate the difference in the heat content of the 
upwelling limb of the convective cell and the down-welling limb of the 
convective cell. We need to compute the rate at which heat is being 
transferred upwards and then divide by the surface area of the convective 
cell. 

First we will calculate the rate at which a convective cell circulates. Note 
that all of these calculations are a bit approximate, assume that there is no 
significant conductive heat transfer, and don’t really treat the details of the 
convection geometry. We are going to ignore the adiabatic gradient, and just 
assume that the temperature gradients that we are talking about are those in 
excess of the adiabat. 

Consider a convective cell with an upwelling limb at temperature T1 and a 
downwelling limb at temperature T2. The density of the upwelling and 
downwelling limbs are then: 

ρ1= ρ o (1- αT1) ρ2= ρ o (1- αT2) 
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The pressure within each limb as a function of depth is just: 

P1= ρo (1- αT1) g z P2= ρo (1- αT2) g z 

Integrating over z to find the force (per unit length into the diagram) gives: 

F1/length = ρo (1- αT1) g d2/2 F2/length = ρo (1- αT2) g d2/2 

The net horizontal force on the sides of the cell is then just: 

ΔF/length = (ρoαΔT) g d2/2 

Because inertial terms for flow in planetary mantles (but not liquid cores!) 
are negligible (this will be a homework problem too), the total force on the 
convecting cell, or any piece of it, must be zero. Therefore this horizontal 
force must be balanced by shear forces applied to the top and bottom of the 
cell. 

Suppose that the flow along the base of the cell reaches a maximum velocity 
of uo at a height c above the base of the cell. Then the shear stress on the 
base of the cell is approximately: 

σxz = − µ uo /c 

The horizontal material flux within this basal channel will also scale with 
both uo and c, so: 

flux/length = β’ c uo 

where β’ is some dimensionless constant that describes the shape of the 
flow. Multiplying this by the width of the cell, w, gives the total force per 
unit length on the base of the cell: 

ΔF/length = - µ w uo /c 

If there is a fixed lithosphere on top, we need to do this for the top of cell as 
well, so the value should be more or less doubled). Setting the total force on 
the cell equal to zero gives: 
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(ρoαΔT) g d2/2 - µ w uo /c =0 

and solving for uo gives: 

uo = (ρoαΔT) g (cd2/w) /2µ 

The amount of heat, Q2, carried upwards in the upwelling limb in an amount 
of time Δt (and per unit length into the diagram) is just the flux times the 
heat per unit volume: 

Q2/length = (β’ c uo) (T2ρCp) Δt 

and similarly the amount of heat carried downward in the down-welling limb 
is: 

Q1/length = (β’ c uo) (T1ρCp) Δt 

Thus the net heat (per unit length) carried upward in a time Δt is just the 
difference between the two quantities. The average heat flow out of the 
surface of the cell is equal to this difference divided by Δt and divided by the 
surface area of the cell (or width of the cell, since we have computed Q per 
unit length into the diagram). 

qav = (β’ c uo) (T2-T1) (ρCp) /w 

substituting in for uo we find: 

qav = (β’c2/2w2) (d2ρ2ΔT2g α Cp/ µ ) 

The first term in parentheses is dimensionless and reflects the geometry of 
the flow, both in terms of the cell width, channel depth, whether there is a 
fixed lithosphere on top of the cell and a number of other geometrical factors 
that we have glossed over. If we write this dimensionless number as β, then: 

! 

qconvective = β (d2ρ2ΔT2g α Cp/ µ) 

(Because β incorporates the term (c/w)2, it will typically be much less than 
one. We will give a default value to use for doing the homework problems.) 
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Remember that ΔT is the temperature difference between the top and bottom 
of the cell corrected for the adiabatic gradient (also called the “super-
adiabatic temperature”). We will leave it to the homework to show that, 
ignoring the adiabat, the ratio between the purely convective heat flow and 
the purely conductive heat flow computed for the same layer is the Rayleigh 
number times a dimensionless constant. This is another way of thinking 
about the Rayleigh number, although not a very conventional one. 

Cooling Planets 

From the expression that we derived above for convective heat flow, we can 
calculate how fast a planet will cool due to convective circulation in its 
mantle. We already showed that conductive cooling can’t penetrate much 
below several hundred kilometers depth in 4 Gy, so the main process by 
which planetary interiors cool has to be convection. 

For mantle materials, viscosity, which shows up the Rayleigh number and 
the heat flow expression, is strongly dependent on temperature, and we have 
to take this into account when we compute the cooling. We can approximate 
the viscosity dependence on temperature (this is just a useful approximation 
in a form that will be mathematically tractable!) as: 

! 
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where T is the temperature in the middle of the mantle. γ should probably be 
set such that a 100°C increase in temperature gives about an order of 
magnitude decrease in viscosity, so a value of .05 or so is reasonable. If 
there is a linear thermal gradient in the mantle, then T is also the average 
temperature of the mantle. 

Next, we need to write an equation that relates the change in temperature of 
the mantle through time to the convective heat flow. Consider a vertical 
column of material with height d, surface area A and volume V. Then: 
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where Qr is the heat production rate per unit volume and d is the thickness of 
the convecting layer. For simplicity we will assume that all the heat 
generated is added at the base of the convecting layer, although this is not in 
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fact really correct and we would need to adjust for the internal generation of 
heat. Simplifying to remove the surface area and volume terms: 

! 
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Now set this equal to the expression for convective heat flow: 

! 

q(t) = "
d
2#2$T 2g%Cp

µ(T)
= &#Cpd

'T

't
+Qrd

which is the same as: 

! 

"T

"t
= #$

d%&T 2g'

µ(T)
+
Qr

%Cp

We will now substitute in the expression for µ(T), and so that we have an 
expression that is easy to solve, assume that ΔT is a constant(remember that 
ΔT is the superadiabatic temperature difference between the top and bottom 
of the mantle): 
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From this, we can calculate how fast a planetary mantle will cool by 
convection if we know the thickness of the mantle and the various other 
parameters. 


