12.002 Physics and Chemistry of the Earth and Terrestrial Planets Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Origin of the Elements

Abundance of the elements of the Solar System. Six key observations to be explained:

- 1. H and He are by far the most abundant.
- 2. Elemental abundances generally drop with increasing atomic number.
- 3. Even Z (atomic number) elements are more abundant than odd Z elements.
- 4. Li, Be, B are anomalously rare.
- 5. Fe is anomalously abundant.
- 6. Tc, Pm, are elements Z > 83 (Bi) [except for Th, U] are extremely scarce or nonexistent.

Nearly all of the elements beyond H and He are products of nucleosynthesis (synthesis of nuclides in stars)

Big Bang

100 seconds after T cooled to 10^9 K and then elements can form.

H originated from coulomb attraction of protons and electrons.

Strong forces hold He nuclei together. (Strong force dominates within range of $\sim 10^{-15}$ m)

Big Bang epoch results in: H (72%) He (28%)

All Z > 2 are made via nucleosynthesis. In stars (mass > 0.072 M_{sun})

Explains observation #1.

Proton – Proton Chain H-burning

2 ($^{1}H + {}^{1}H \rightarrow {}^{2}H + \text{positron} + \text{neutrino} + \text{thermal energy}$) [timescale ~10⁹ years] 2 ($^{2}H + {}^{1}H \rightarrow {}^{3}\text{He} + \text{gamma ray} + \text{thermal energy}$) [timescale ~1 second] ${}^{3}\text{He} + {}^{3}\text{He} \rightarrow {}^{4}\text{He}$ (i.e. alpha particle) + 2 ${}^{1}\text{H} + 2$ gamma ray + thermal energy [timescale ~10⁶ years]

Net: $4^{1}H \rightarrow {}^{4}He + 2$ positron + 2 neutrino + thermal energy

dE/dt (energy production rate) is proportional to T^4 (T = temperature)

However, our sun is an evolved star: composed of elements synthesized by previous dead stars. Evolved stars primarily use the **CNO cycle** instead to synthesize He:

 $\label{eq:constraint} \begin{array}{l} ^{12}\mathsf{C} + \ ^{1}\mathsf{H} \ensuremath{\rightarrow}\ ^{13}\mathsf{N} \ensuremath{\rightarrow}\ ^{13}\mathsf{C} \ensuremath{+}\ \text{positron} \ensuremath{+}\ \text{neutrino} \ensuremath{+}\ \text{thermal energy} \\ ^{13}\mathsf{C} \ensuremath{+}\ ^{1}\mathsf{H} \ensuremath{\rightarrow}\ ^{14}\mathsf{N} \ensuremath{+}\ \text{thermal energy} \\ ^{14}\mathsf{N} \ensuremath{+}\ ^{1}\mathsf{H} \ensuremath{\rightarrow}\ ^{15}\mathsf{O} \ensuremath{+}\ \text{thermal energy} \\ ^{15}\mathsf{O} \ensuremath{\rightarrow}\ ^{15}\mathsf{N} \ensuremath{+}\ \text{positron} \ensuremath{+}\ \text{positron} \ensuremath{+}\ \text{thermal energy} \\ ^{15}\mathsf{N} \ensuremath{+}\ ^{12}\mathsf{C} \ensuremath{+}\ ^{4}\mathsf{H} \ensuremath{\rightarrow}\ ^{12}\mathsf{C} \ensuremath{+}\ ^{4}\mathsf{H} \ensuremath{+}\ ^{12}\mathsf{C} \ens$

Net: $4^{1}H \rightarrow 4He + 2$ positron + 2 neutrino + thermal energy

Catalyzed by C, N, O. Both the p-p chain and the CNO cycle need $T > 10^7 K$

Triple Alpha Process – Helium Addition

Radiation pressure (from fusion energy) balanced with self gravity determines the size of the star's core. When a star's core has consumed most of its hydrogen, it will collapse since it is no longer pressure supported by radiative energy produced by H-fusion. For stars with $M > 0.8 M_{sun}$, core pressure will reach temperatures ($T > 10^8$ K) and pressures sufficient for He fusion (red giant phase)

⁴He + ⁴He → ⁸Be (half life of only 10^{-16} sec) ⁸Be + ⁴He → ¹²C

Short half-life of ⁸Be explains why you need high T, P

Skips Li, B, which explains observations #4.

Carbon is the first stable element made beyond hydrogen and helium.

At higher *T*, pressure, further He-addition occurs: ${}^{12}C + {}^{4}He \rightarrow {}^{16}O$ ${}^{16}O + {}^{4}He \rightarrow {}^{20}Ne$ ${}^{20}Ne + {}^{4}He \rightarrow ...$

Increasingly difficult due to increasing Coulomb repulsion with increasing Z. Explains observation #2

He-addition continue up to the production of:

⁵⁶Ni → decays to ⁵⁶Co decays to → ⁵⁶Fe. He addition stops at ⁵⁶Fe due to Coulomb repulsion. This explains observation #5.

He-addition also explains observation #3 (even Z element preference in saw tooth pattern) Ultimately this favorability for even Z is determined by quantum mechanical laws.

Also partly explains observation #6: Tc, Pm have odd Z. Main reason for lack of Tc and Pm is that they form no stable isotopes.

Rest masses of individual nucleons in elemental nuclei up to ⁵⁶Fe are slightly higher than nucleus itself. This is the mass deficit Δm . Lower energy state in the nucleus rather than free.

Binding energy = $-\Delta mc^2$ Cannot fuse anything higher than iron. Anything outside the range of the strong force (= 10^{-15} m) will not fuse.

Beyond iron:

.

Fusion of elements with Z < 26 releases energy Z > 26 absorbs energy

due to enormous Coulomb repulsion.

The way to build higher *Z* elements is to add uncharged nucleons: neutrons!

Beta – Decay and Chart of the Nuclides

Once ⁴He has finally consumed, $T \rightarrow 10^9$ K and C-burning occurs. This generates free protons: ¹²C + ¹²C \rightarrow ²⁰Ne + ⁴He ¹²C + ¹²C \rightarrow ²³Na + proton ¹²C + ¹²C \rightarrow ²³Na + proton

Protons are consumed to make new elements via *P*- *Process*: ${}^{12}C + P \rightarrow {}^{13}N + gamma ray$ ${}^{13}N \rightarrow {}^{13}C + positron + gamma ray$ ${}^{13}C + {}^{4}He \rightarrow {}^{16}O + neutron$

S-Process – Slow neutron addition. Occurs in late stage red giants. It occurs by addition of one or a few neutrons to a nuclide in the valley of stability followed by β° decay back to the valley. Usually just one neutron addition. β^{+} decay does not play a role in the s-process. This is "slow" because elements in valley of stability absorb neutrons only every 10^{4} sec.

Sources of neutrons for s-process

¹⁸O + ⁴He → ²¹Ne + neutron ¹⁸O + ⁴He → ²²Ne + gamma ²²Ne + ⁴He → ²⁵Mg + neutron