12.002 Physics and Chemistry of the Earth and Terrestrial Planets Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Geochronology

Types of radioactive decay

- 1. Alpha Decay.
 - Ejection of a ⁴He nucleus: two protons (p), two neutrons (n)
- 2. Beta Decay
 - Ejection of an electron or a positron
 - a. Electron emission (β ⁻ decay): n \rightarrow p + electron + antineutrino
 - b. Positron emission (β^+ decay): p \rightarrow n + positron + neutrino
 - c. Electron capture: p + orbital electron \rightarrow neutron + neutrino

Derive some basic equations about radioactive decay.

The decay rate of a parent nuclide (*N*) is proportional to its abundance:

 $dN/dt = -\lambda N$

where λ is the decay constant.

 $\int \frac{dN}{N} = \int -\lambda dt$

 $\ln N = -\lambda t + C$ $(C = \ln N_0)$

$$N(t) = N_0 e^{-\lambda t} \qquad N_0 = N(t = 0)$$
(1)

But N_0 usually not known by experimentalist.

Concentration of the daughter $D - D_0 = N_0 - N$. Substituting this into (1) gives

$$D - D_0 = N_0 - Ne^{-\lambda t} = N_0(1 - e^{-\lambda t})$$

Dividing by (1) gives

$$(D-D_0)/N = N_0(1-e^{-\lambda t})/N_0e^{-\lambda t} = (1-e^{-\lambda t})/e^{-\lambda t}$$

$$(D-D_0)/\mathsf{N} = e^{\lambda t} - 1$$

So $D = D_0 + N(e^{\lambda t} - 1)$

U/Pb Dating:

3 U radioactive isotopes:

```
^{238}U \rightarrow ^{206}Pb
^{235}U \rightarrow ^{207}Pb
^{238}Th \rightarrow ^{208}Pb
```

Th dating rarely used. $\lambda_{238} = 1.55 \times 10^{-10} \text{ y}^{-1}$ $\lambda_{235} = 9.85 \times 10^{-10} \text{ y}^{-1}$ $\lambda_{232} = 4.95 \times 10^{-11} \text{ y}^{-1}$

half life $(T_{1/2}) = 4.5$ billion years $T_{1/2} = 0.750$ billion years $T_{1/2} = 14$ billion years $^{\rm 235}{\rm U}$ relatively more abundant than $^{\rm 238}{\rm U}$ in early solar system due to its higher decay constant.

Lead has four main stable isotopes:

204 (not radiogenic)

206, 207, 208 (radiogenic)

Pb/Pb Dating:

Write decay equation $D = D_0 + N(e^{\lambda t} - 1)$ in terms of the two radioactive U isotopic systems:

$$\frac{206p_b}{204p_b} = \left(\frac{206p_b}{204p_b}\right)_0 + \frac{238U}{204p_b} \left(e^{\lambda 238t} - 1\right)$$

$$\frac{207p_b}{204p_b} = \left(\frac{207p_b}{204p_b}\right)_0 + \frac{235U}{204p_b} \left(e^{\lambda 235t} - 1\right)$$

Divide two equations:

$$\frac{\frac{207Pb}{204Pb} - \left(\frac{207Pb}{204Pb}\right)}{\frac{206Pb}{204Pb} - \left(\frac{206Pb}{204Pb}\right)_{0}} = \frac{\frac{255U(e^{\lambda_{235t}} - 1)}{258U(e^{\lambda_{235t}} - 1)}}$$

Multiply both sides by $\frac{206p_b}{204p_b} - \left(\frac{206p_b}{204p_b}\right)_0$:

$$\frac{207p_b}{204p_b} = \frac{235U(e^{\lambda_{23}5t}-1)}{235U(e^{\lambda_{23}5t}-1)}\frac{206p_b}{204p_b} + \left(\frac{207p_b}{204p_b}\right)_0 - \frac{235U(e^{\lambda_{23}5t}-1)}{235U(e^{\lambda_{23}5t}-1)}\left(\frac{206p_b}{204p_b}\right)_0$$

Assume $\frac{235}{238}U$ is constant everywhere in the solar system today ~ 1/137

This is then the equation for a straight line!

$$y = mx + b$$

ordinate: $y = {}^{207}\text{Pb}/{}^{204}\text{Pb}$
abscissa: $x = {}^{206}\text{Pb}/{}^{204}\text{Pb}$
slope: $m = {}^{\frac{235}{238}U} \frac{(e^{\lambda_{235}t} - 1)}{(e^{\lambda_{238}t} - 1)}$
y-intercept: $b = ({}^{\frac{207}{204}}Pb)_0 - {}^{\frac{235}{238}U} \frac{(e^{\lambda_{235}t} - 1)}{(e^{\lambda_{238}t} - 1)} ({}^{\frac{207}{204}}Pb)_0$