12.005: Problem set 3 - Due 3/8/06

1) (20\%) In the x_{1}, x_{2}, x_{3} coordinate system, the stress tensor $\sigma_{i j}$ is given by:

$$
\left.\sigma_{i j}=\begin{array}{ccc}
{[3} & 0 & 0 \\
0 & 6 & -\sqrt{3}
\end{array} \right\rvert\,
$$

Consider the new ("primed") coordinate system obtained by rotating by 60° about the x_{1} axis.
a) Determine σ_{ij}.
b) Determine, compare and contrast the principal stresses and principal directions of σ_{ij} and σ_{ij}.
2) (20\%) Give the stress tensors, Mohr's circles and maximum shear stresses for the following cases of tractions on a unit cube:

3) (10\%) If there are no body forces, demonstrate whether equilibrium exists, in general, for stresses:

$$
\begin{aligned}
& \sigma_{x x}=3 x^{2}+4 x y-8 y^{2} \\
& \sigma_{y y}=2 x^{2}+x y+3 y^{2} \\
& \sigma_{x y}=1 / 2 x^{2}-6 x y-2 y^{2} \\
& \sigma_{z z}=\sigma_{x z}=\sigma_{y z}=0
\end{aligned}
$$

4) (30\%) In a laboratory test (see picture on next page), samples of sandstone failed at the conditions:
a) confining "pressure" = 200 bars, uniaxial load stress $=1100$ bars
b) confining "pressure" $=400$ bars, uniaxial load stress $=1700$ bars

If the strength of rock can be described by the Navier-Coulomb criterion, what are:
(i) the intrinsic strength σ_{0},
(ii) the coefficient of internal friction μ,
(iii) the orientation of the fractures in each test,
(iv) the maximum shear stress in each test,
(v) the shear traction on the failure plane in each test?

Give the answers for dimensional quantities both in these units and in SI units.
5) (20\%) One way of measuring the state of stress in a rock unit is to use 3 flat jacks arranged in a "delta" pattern, with each cut separated by 60°. (The name comes from the resemblance to the Greek character Δ.) The normal traction σ_{n} across each of the cuts can be measured easily using a "flat jack," as discussed in class. Write the expression for the normal traction across each of the three cuts, $\sigma_{n}{ }^{i}, i=1,2,3$, in terms of the components of the (two-dimensional) stress tensor, σ_{11}, σ_{12}, and σ_{22}.

