12.158 Lecture 10

Molecular Biosignatures:

Real and Potential Biomarkers, Analytical Innovations, Meteorites & Old Rocks

http://marsprogram.jpl.nasa.gov/msl/

http://marsprogram.jpl.nasa.gov/msl/

RESEARCH ARTICLE

Search for Past Life on Mars: Possible Relic Biogenic Activity in Martian Meteorite ALH84001

David S. McKay, Everett K. Gibson Jr., Kathie L. Thomas-Keprta, Hojatollah Vali, Christopher S. Romanek, Simon J. Clemett, Xavier D. F. Chillier, Claude R. Maechling and Richard N. Zare

This image has been removed due to copyright restrictions.

PAH proposed to be molecular fossils ?

' PAH are abundant as fossil molecules in ancient sedimentary rocks '

However, PAH are not necessarily biogenic

Topics

- What are useful criteria for biogenicity? How can we be sure of measuring the right thing in a sample on Mars or returned from Mars?
- Analytical methods for investigating molecular biosignatures in rocks from Earth & elsewhere

Report of the NASA Biomarker Taskforce 2000

This image has been removed due to copyright restrictions.

Molecules, isotopes, microfossils, mineral fabrics Roger Summons, Pierre Albrecht, Sherwood Chang, Gene McDonald and J. Michael Moldowan

Assumptions

- Extra-terrestrial life will resemble earthly life based on carbon chemistry operating in an aqueous environment
 - carbon is the only element that is sufficiently abundant, ubiquitous and chemically suited for life
- It will process chemicals for carbon and energy, make copies of itself, be autonomous and evolve in concert with its environment
- Biochemical pathways will operate as above
 - comprise energy yielding and replication reactions
 - construct complex molecules from simple, universal precursors
 - evolve

Abiotically produced organic materials

Organic acids and diacids, amino acids, hydroxy acids, alcohols, amines

- n- and branched-hydrocarbons incl. methane
- Aromatic hydrocarbons (PAH)

Intrinsic Characteristics (Patterns) of Terrestrial Molecular Biosignatures

- Enantiomeric excess
- Diastereoisomeric preference
- Constitutional isomer preference
- Repeating constitutional sub-units or atomic ratios
- Systematic isotopic ordering at molecular and intramolecular levels
- Systematic distribution patterns or clusters (e.g. C-number, concentration, d¹³C) of structurally related compounds

Enantiomers of Alanine

L-amino acids predominate in biology L-amino acid XS in Murchison meteorite (Engel & Macko a-aa's; Cronin & Pizzarello non-protein aa's) Non-biological processes can yield enantiomeric excess Asymmetric catalysis and autocatalysis Soai & Sato: slight chiral excess propagated during autocatalytic syntheses Pizzarello and Weber: AA enantiomeric excess promotes asymmetry in aldol condensations of glycoaldehyde

Stereoisomerism in Tartaric Acid

B & C enantiomers A & B and A & C are diastereoisomers Life makes a limited number of all the possible diastereoisomers

Stereoisomerism in Cholesterol

2⁸ stereoisomers possible for cholesterol Biology (ie Eucarya) makes only one

Studies of hydrocarbons as old as 2700 Myr show no deviation of sterane or hopane stereoisomer patterns; the fossils had the same precursors as exist today

Information Preserved in Products of Diagenesis: The Sterol Pathways

Complex sterane mixture in mature sediments & oil

Constitutional Isomers

(1*R*)-(+)-α-Pinene

Constitutional Isomers

$$HOOC - C - C - C - C - C - C - C$$

$$2 \text{ or OH}$$

X = NH

Small molecules identified in the Murchison Meteorite tend to occur with the maximum number of possible theoretical isomers e.g. monoamino monocarboxylic acids and monohydroxy, monocarboxylic acids (Cronin et al. 1993)

Constitutional Isomers

HOOC -
$$\begin{bmatrix} \alpha & \beta & \gamma & \delta & \epsilon & \zeta \\ C - C - C - C - C - C - C - C \end{bmatrix}$$

X = NH₂ or **OH**

C-atoms	α	β	γ	δ	3	ζ	unknown
2	<i>1</i> , 1, 1						
3	<i>1</i> , 1, 1	<i>1</i> , 1, 1					
4	2 , 2, 2	2 , 2, 2	<i>1</i> , 1, 1				
5	<i>3</i> , 3, 3	6 , 6, 3	<i>3</i> , 3, 3	<i>1</i> , 1, 0			1
6	8 , 8, 8	<i>12</i> , 3, 1	<i>11</i> , 4, 0	4 , 2 , 0	<i>1</i> , 1, 0		2
7	<i>18</i> , 18, 12	29 , 0, 0	29 , 0, 0	<i>20</i> , 0, 0	5 , 0, 0	<i>1</i> , 0, 0	2

Acetogenic Lipids & Polyisoprenoids

Life makes a limited number of all the possible constitutional isomers because it :

- has evolved 'universal' biochemical pathways

- constructs macromolecules from small, common precursors (eg 20 amino acids in protein, 4 bases of DNA)

 \rightarrow > preference for certain carbon numbers (clusters) & systematic isotopic ordering within & between molecules

Clusters of Compounds - example of a sediment

Isotopic Ordering

Polyisoprenoid lipids

This image has been removed due to copyright restrictions.

Polymethylenic = acetogenic lipids

Isotopic ordering is a consequence of the universality of biochemical pathways

Hayes J. M. (2002) Fractionation of the isotopes of carbon and hydrogen in biosynthetic processes. In: *Stable Isotopic Geochemistry*, Valley J. W. and Cole D.R. (eds.) *Reviews in Mineralogy* ¹⁹*nd Geochemistry.*

Acetogenic Lipids

Acetate Methyl-C and Carboxyl-C are isotopically distinct and determined by its metabolic source and the profound isotope effect of pyruvate dehydrogenase

Origin of C-Atoms in Polyisoprenoids & Consequent Isotopic Ordering

Observing this at natural abundance presently a challenge

Carbon Number

RESEARCH ARTICLE

Search for Past Life on Mars: Possible Relic Biogenic Activity in Martian Meteorite ALH84001

David S. McKay, Everett K. Gibson Jr., Kathie L. Thomas-Keprta, Hojatollah Vali, Christopher S. Romanek, Simon J. Clemett, Xavier D. F. Chillier, Claude R. Maechling and Richard N. Zare

This image has been removed due to copyright restrictions.

PAH proposed to be molecular fossils ?

' PAH are abundant as fossil molecules in ancient sedimentary rocks '

However, PAH are not necessarily biogenic

μL² MS of Murchison Meteorite

Feb 1, 99

Murchison

Feb 1, 99

PAH Proposed as molecular fossils ?

δ¹³C Murchison organic compounds

Topics

- What are useful criteria for biogenicity? How can we be sure of measuring the right thing in a sample on Mars or returned from Mars? Deliberations of the 2000 NASA Biomarker Taskforce – molecular biosignatures
- Analytical methods for investigating molecular biosignatures in rocks from Earth & elsewhere
- New 'technologies' in molecular biosignatures for organisms and ancient environments

OMR017 Buah Fm.

Image by MIT OpenCourseWare.

OMR017 Buah Fm

b

С

d

g

a. b.

C.

d. e.

f.

g.

h.

m.

Nr 35

nº 34

h

а

17α(H),21β(H)-30-norhopane 17α(H),21β(H)-hopane 17α(H),21β(H)-29-homohopane 22S 17α(H),21β(H)-29-homohopane 22R gammacerane 17α(H),21β(H)-29-bishomohopane 22S 17α(H),21β(H)-29-bishomohopane 22S 17α(H),21β(H)-29-trishomohopane 22S 17α(H),21β(H)-29-trishomohopane 22S 17α(H),21β(H)-29-tetrakishomohopane 22S 17α(H),21β(H)-29-tetrakishomohopane 22S 17α(H),21β(H)-29-tetrakishomohopane 22S 17α(H),21β(H)-29-pentakishomohopane 22S 17α(H),21β(H)-29-pentakishomohopane 22S

K

m

Nelson, Reddy, Freysinger + MIT, unpu

20 Carbons

19 Carbons-

18 Carbons

17 Carbons-

16 Carbons

15 Carbons

14 Carbons

OMR011 - Thuleilat Fm

³² Nelson, Reddy, Freysinger + MIT, unp

n-C 14

n-C 13

Nelson₃, Reddy, Freysinger + MIT, unpublished

Topics

- What are useful criteria for biogenicity? How can we be sure of measuring the right thing in a sample on Mars or returned from Mars? Deliberations of the 2000 NASA Biomarker Taskforce – molecular biosignatures
- Analytical methods for investigating molecular biosignatures in rocks from Earth & elsewhere GC²-TOFMS Hydropyrolysis & Strelley Pool C

Biogenic Gases

Mars atmosphere:

This image has been removed due to copyright restrictions.

CO₂ 95.3% N₂, 2.7% Ar 1.6% CO 0.07% O₂ 0.13% H₂O 0-300 ppm CH₄ ppb \rightarrow seasonally and spatially variable (Mumma et al., Science 323, 1041, 2009)

Taphonomy - Preservation Windows

Biosignature taphonomic window	Confidence in context	How this informs about potential biosignature
		preservation
atmospheric gases	exceptional	predictable via chemical modeling
crystalline sedimentary mineral entrainment of organic compounds	very high	can deduce formation mechanism and subsequent history
biofabric lithification	very high	can deduce history from lithology & stratigraphic relationships
body fossil preservation	very high	can deduce history from lithology and stratigraphic relationships
mineral replacement of body fossil	high	can deduce from mineralogy

Taphonomy: The Role of Sediment Lithology

OM preservation by physical protection (Hedges, Keil, Mayer 1990s)

Data for coastal sediments: C = clay L= silt S = sand B= bulk

This image has been removed due to copyright restrictions.

Organic matter concentrations strongly correlate with mineral surface area (or small clay particles). As degradation proceeds an increasingly large fraction of the remaining organic matter is protected by its association with mineral surfaces. Hedges and Keil, 1995

Biosignature Formation & Preservation

Table 3:

						ID by remote sensing			
Martian context> Early Mars Environment	Support Biotic C formation	Support for Abiotic C formation	Support Carbon Conc	Support Preservation	Potential for Recent Exhumation	geomor phic	minera logic	stratigr aphic	ID by MSL
Hydrothermal (<100C)							mod-	-	
subsurface	mod	mod (F/T)	low	mod	low	mod	high	n/a	high
Hydrothermal (<100C) surface	high	low	mod-high	mod	mod	high	mod- high	low	high
Aeolian sediments									
(sand)	low	low	low	low	low	high	n/a	mod	high
altered aeolinites (dust)	very low	low	low	low	low	low	n/a	n/a	high
Fluvial channel	low	low	low	low	high	high	n/a	high	high
Fluvial floodplain	low-mod	low	mod	mod	possible	high	n/a	high	high
alluvial fan	low	low	low	low	low	high	n/a	high	high
Deltaic	high	low	high	high	low	high	n/a	high	high
Lacustrine (perennial)	high	low	high	high	high	mod	mod	mod	high
Lacustrine (evaporitic) (Cl)	med	low	high	high-very high	high	mod	high	mod	high
Lacustrine (evaporitic) (SO4)	low	low	high	high-very high	high	mod	high	mod	high
Regional Groundwater pore system	low	low	low	low	high	n/a	n/a	n/a	mod
Glacial deposits	low	low	low	low	high	high	n/a	low	high
permafrost	low	low	low	mod	mod	high	n/a	n/a	high
soil (surface fines chemically altered by atmosphere)	low	low	low	low	low	n/a	n/a (albedo and TI)	n/a	high
Pyroclastic Deposits									
(unaltered)	low	low	low	low	low	mod	low	high	high
Volcanic flows	very low	low	low	low	low	high	high	mod	high
Regolith/Fractured Bedrock (not soil)	low	low	low	low	low	high	n/a	n/a	high

Biosignature Formation Processes

Table 3:

						ID by remote sensing			
Martian context> Early Mars Environment	Support Biotic C formation	Support for Abiotic C formation	Support Carbon Conc	Support Preservation	Potential for Recent Exhumatio n	geomor phic	miner alogic	stratigr aphic	ID by MSL
Hydrothermal (<100C) subsurface	mod	mod (F/T)	low	mod	low	mod	mod- high	n/a	high
Hydrothermal (<100C) surface	high	low	mod- high	mod	mod	high	mod- high	low	high
Aeolian sediments (sand)	low	low	low	low	low	high	n/a	mod	high
Fluvial channel	low	low	low	low	high	high	n/a	high	high
Fluvial floodplain	low-mod	low	mod	mod	possible	high	n/a	high	high
Deltaic	high	low	high	high	low	high	n/a	high	high
Lacustrine (perennial)	high	low	high	high	high	mod	mod	mod	high

Biosignature Formation Processes

						ID by remote sensing			
Martian context> Early Mars Environment	Support Biotic C formation	Support for Abiotic C formation	Support Carbon Conc	Support Preservation	Potential for Recent Exhumatio n	geomor phic	minera logic	stratigr aphic	ID by MSL
Hydrothermal (<100C) subsurface	mod	mod (F/T)	low	mod	low	mod	mod- high	n/a	high
Hydrothermal (<100C) surface	high	low	mod- high	mod	mod	high	mod- high	low	high
Aeolian sediments (sand)	low	low	low	low	low	high	n/a	mod	high
Fluvial channel	low	low	low	low	high	high	n/a	high	high
Fluvial floodplain	low-mod	low	mod	mod	possible	high	n/a	high	high
Deltaic	high	low	high	high	low	high	n/a	high	high
Lacustrine (perennial)	high	low	high	high	high	mod	mod	mod	high

Lost City Hydrothermal Field Vent Fluids

Hydrogen – up to 15 mmol/kg

Methane – up to 2 mmol/kg

This image has been removed due to copyright restrictions.

Calcium – up to 30 mmol/kg

pH – 9 to 11

Low temp volatile production: Proskurowski et al., Chem. Geology 2006

Abiogenic Hydrocarbon Production at Lost City Hydrothermal Field: Proskurowski et al., Science 2006

Amend, Hoehler, McCollom AbSciCon 2010

¹³δ LC methane suggests it is abiogenic

Available online at www.sciencedirect.com

Geochimica et Cosmochimica Acta 73 (2009) 102-118

Geochimica et Cosmochimica Acta

www.elsevier.com/locate/gca

Extraordinary ¹³C enrichment of diether lipids at the Lost City Hydrothermal Field indicates a carbon-limited ecosystem

Alexander S. Bradley^{a,*}, John M. Hayes^b, Roger E. Summons^a

^a Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA ^b Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA

Received 3 March 2008; accepted in revised form 1 October 2008; available online 17 October 2008

Courtesy Elsevier, Inc., http://www.sciencedirect.com. Used with permission.

¹³δ LC methane suggests it is abiogenic

Structure & δ^{13} C LC lipids show methane production is also biological

Courtesy Elsevier, Inc., http://www.sciencedirect.com. Used with permission.

Murchison

Feb 1, 99

Topics

- What are useful criteria for biogenicity? How can we be sure of measuring the right thing in a sample on Mars or returned from Mars? Deliberations of the 2000 NASA Biomarker Taskforce – molecular biosignatures
- Analytical methods for investigating molecular biosignatures in rocks from Earth & elsewhere GC²-TOFMS
- New 'technologies' in molecular biosignatures for organisms and ancient environments

Hydropyrolysis (H₂)

Hydropyrolysis facilitates breakdown of macromolecules & minimises rearrangement

δ^{13} C profiles for HyPy products of 3 meteorites

δ^{13} C n-Alkanes in Meteorites

Microbes: Comparison of alkyl chain lengths (m/z 85)

SPC 16 Kerogen sequential HyPy

Small EOP of n-alkanes in low T fraction probably indicates some younger contamination e.g. produced from reduction of even C no. fatty acids.

Distribution of aromatic hydrocarbons from HyPy

Concluding Thoughts

- 1. Organic compounds made by terrestrial organisms have generic structural & isotopic traits. Searching for these features in extraterrestrial OM is a sound approach to life detection.
- 2. Terrestrial sediments as old as 2700Ma contain an abundance of 'molecular biosignatures'. Lipid biosynthetic pathways are of great antiquity & there is no evidence for there having been alternative pathways or extinct pathways.
- Hydrocarbons are robust and, of all compound classes, are likely to be preserved under harsh conditions so long as they are sterile. Emerging technologies such_{as mu} ltidimensional GC and GC-TOF are useful analytical tools.
- 4. Hyropyrolysis assists screening for biosignatures in macromolecular OM and biomass

MIT OpenCourseWare http://ocw.mit.edu

12.158 Molecular Biogeochemistry Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.