12.215 Modern Navigation

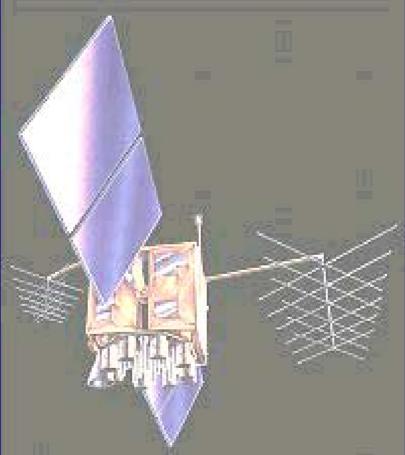
Thomas Herring

Summary of last class

- Today we covered Electronic Distance Measurement (EDM)
- History
- Methods:
 - Theory: Propagating electromagnetic signals
 - Timing signal delays
 - -Use of phase measurements
 - Application areas (other than GPS)
- Left you with thought of how we solve the duty cycle (not transmitting all the time) and user interaction with GPS?

Today's Class

- Fundamentals of GPS
- Method of encoding GPS signals (bi-phase, quadrature modulation)
- Fundamentals of correlation methods used
- Specifics of the GPS system
 - Frequencies
 - -Chip rates
 - Data rates and message content


GPS Original Design

- Started development in the late 1960s as NAVY/USAF project to replace Doppler positioning system
- Aim: Real-time positioning to < 10 meters, capable of being used on fast moving vehicles.
- Limit civilian ("non-authorized") users to 100 meter positioning through the use of Selective Availability (SA). We discuss this later but basically it not limit civilian accuracy.

GPS Design

- Innovations:
 - -Use multiple satellites (originally 21, now ~28)
 - -All satellites transmit at same frequency
 - Signals encoded with unique "bi-phase, quadrature code" generated by pseudo-random sequence (designated by PRN, PR number): Spreadspectrum transmission.
 - Dual frequency band transmission:
 - L1 ~1.5 GHz, L2 ~1.25 GHz

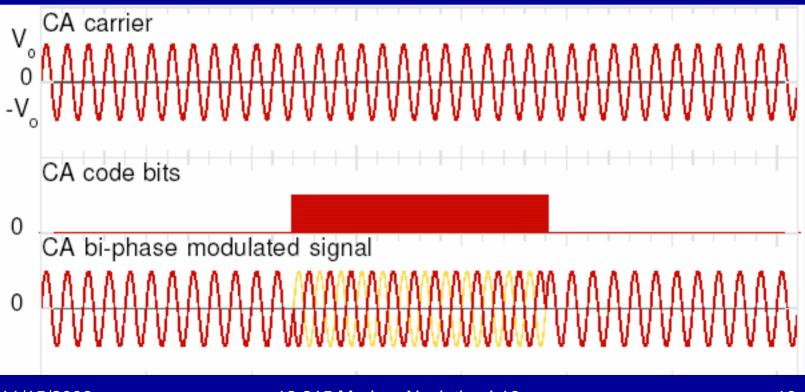
Latest Block IIR satellite (1,100 kg)

Measurements

- Measurements:
 - Time difference between signal transmission from satellite and its arrival at ground station (called "pseudo-range", precise to 0.1–10 m)
 - Carrier phase difference between transmitter and receiver (precise to a few millimeters)
 - Doppler shift of received signal
- All measurements relative to "clocks" in ground receiver and satellites (potentially poses problems).

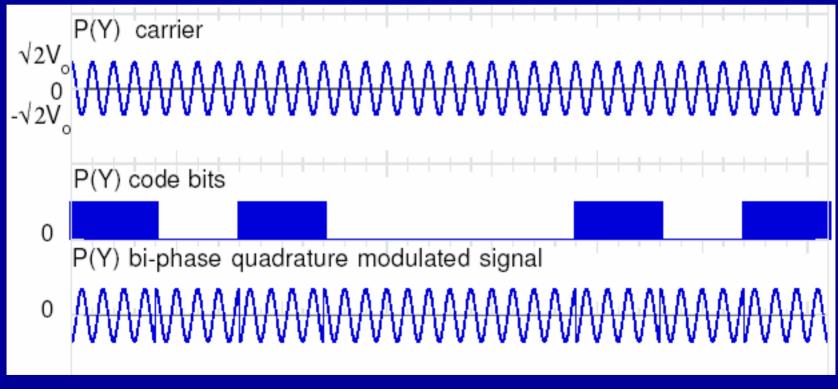
Measurement usage

- "Spread-spectrum" transmission: Multiple satellites can be measured at same time all at the same frequency.
- Since measurements can be made at same time, ground receiver clock error can be determined (along with position: more later).
- Signal

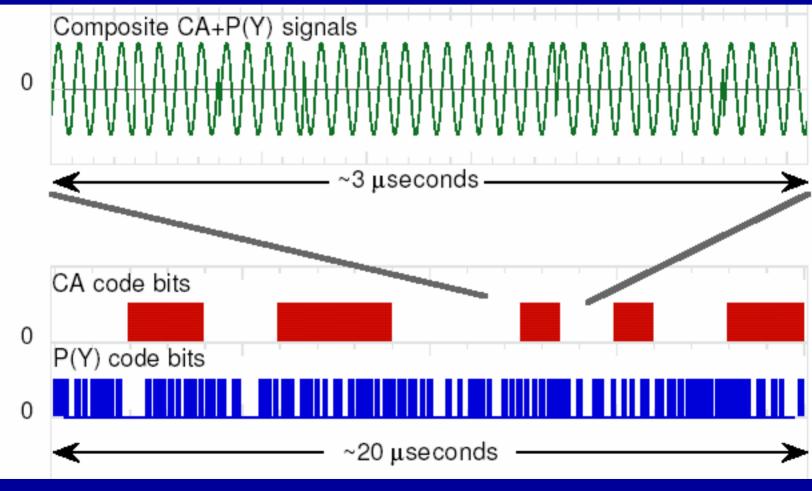

 $V(t, \vec{x}) = V_o \sin[2\pi(ft - \vec{k}.\vec{x}) + \pi C(t)]$ C(t) is code of zeros and ones (binary). Varies discretely at 1.023 or 10.23 MHz

Measurements

- Since the C(t) code changes the sign of the signal, satellite can be only be detected if the code is known (PRN code)
- Multiple satellites can be separated by "correlating" with different codes (only the correct code will produce a signal)
- The time delay of the code is called the pseudo-range measurement (pseudo because it has contributions from the non-synchronized clocks).
- Two codes are written on the signal: C/A coarse acquit ion code and P(Y) code for precise positioning
- The rates of the codes are written is called the Chip rate.


Basic C/A code structure

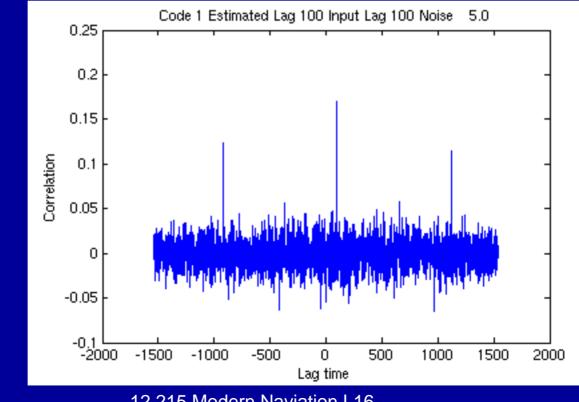
 Shown on figure below. Effectively changing the sign of phase acts like a "negative" pulse



Basic P-code structure

 Basic structure of P code (Y-code when anti-spoofing on). Generated at 10 times the rate of CA code.

Combined signal

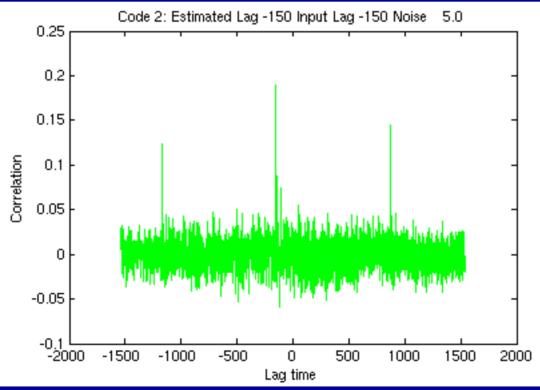

11/15/2006

Combined signal

- In the combined signal, P-code is written 90 degrees out of phase with the C/A code (quadrature). Also has half the power but this is not critical to operation of system.
- Although, all satellites transmit at the same frequency the code differences allow them to be separated. It also means that you can track satellites knowing only the C/A code and the Y-code (as we have at the moment).
- The following Matlab code demonstrates the basic idea <u>GPSSim.m</u>

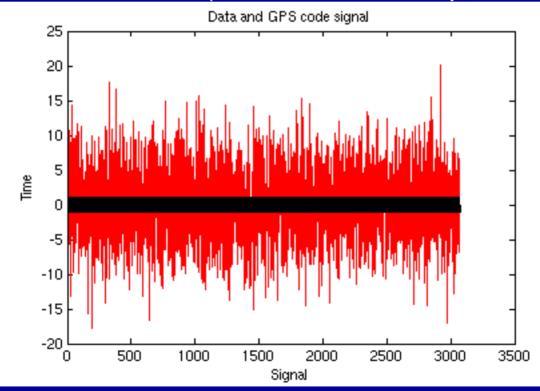
Results from GPSSim

 Correlation with GPS satellite 1 at specified lag. There are multiple peaks because signal repeats as in GPS
Code 1 Estimated Lag 100 Input Lag 100 Noise 5.0



11/15/2006

12.215 Modern Naviation L16


Second imbedded Satellite

Contained in the signal is noise plus 2 GPS satellites. The second GPS satellite correlation function is:

Nature of the signal

 Red is the "observed" signal and black is the imbedded code signal. Despite the small level, we can still correlate OK (use Matlab to experiment).

Basic GPS signal generation

- In the GPS satellites, the C/A and P codes are generated precisely aligned with the clock in the satellite. (Clock is not prefect and can have errors of many μsec).
- In the receiver, a replica of the code is generated precisely aligned with the receiver clock which can have errors of many milli-seconds and sometimes numbers of seconds.
- The receiver correlates the replica with received signal (which is dominated by noise -- spread spectrum).

Basic GPS operation

- The peak in the correlation function, tells the receiver the time offsets of the codes
- This time offset is the sum of the differences in clock times (satellite and receiver) and the time delay of propagation of the signal (range to satellite/speed of light)
- There is a 1.023 msec ambiguity in C/A code range which is resolved by decoding the data message on signal
- Data message is written at 15 bits/seconds and contains information about the estimated error in the satellite clock, the ephemeris of the satellite and information about all the satellites in the GPS constellation (almanac).
- The ephemeris lets the receiver calculate where the satellite was located at time of transmission.

Summary of today's class

- Fundamentals of GPS
- Method of encoding GPS signals (bi-phase, quadrature modulation)
- Fundamentals of correlation methods used (Matlab code)
- Specifics of the GPS system
 - Frequencies
 - -Chip rates
 - Data rates and message content
- Homework 3 is due Wednesday November 29.