MIT OpenCourseWare http://ocw.mit.edu

12.510 Introduction to Seismology Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Problem Set 2 (Due on Wed., April 9, 2008)

Please don't just copy the results from books: show full derivations!

- 1. For (i) S_H wave incidence on the solid-solid interface and (ii) P wave incidence on the free surface:
 - (a) Give the potentials, boundary conditions, Zoeppritz' equations and all the elements of the scattering matrix. (20 points)
 - (b) In some cases an angle exists where the reflection coefficient is zero; the angle for which that happens is called the intramission angle: compute for the wavespeeds given the intramission angle. (10 points)
 - (c) Make plots of reflection and transmission coefficients as function of incidence angle (from $i = 0^{\circ}$ through $i = i_c$ to $i = 90^{\circ}$). (10 points)
 - (d) Explain the plots. (10 points)

SH incidence ($\rho_1 = 2.5g \cdot cm^{-3} \rho_2 = 3g \cdot cm^{-3} \beta_1 = 3km \cdot s^{-1} \beta_2 = 4km \cdot s^{-1}$)

Pincidence ($\alpha = 5.5 km \cdot s^{-1} \beta = 3.2 km \cdot s^{-1}$)

SH incidence

P incidence

2. Give the Zoeppritz' equations of the P- S_V system (P incidence) across a solid-solid interface. (20 points)

P-*S_V* system (*P* incidence)

3. Suppose we have an incidence plane wave S_H as depicted in Figure below: prove that the total response has the same amplitude as that of the incidence wave. (30 points)

