MIT OpenCourseWare
http://ocw.mit.edu

12.510 Introduction to Seismology

 Spring 2008For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Problem Set 2 (Due on Wed., April 9, 2008)

Please don't just copy the results from books: show full derivations!

1. For (i) S_{H} wave incidence on the solid-solid interface and (ii) P wave incidence on the free surface:
(a) Give the potentials, boundary conditions, Zoeppritz' equations and all the elements of the scattering matrix. (20 points)
(b) In some cases an angle exists where the reflection coefficient is zero; the angle for which that happens is called the intramission angle: compute for the wavespeeds given - the intramission angle. (10 points)
(c) Make plots of reflection and transmission coefficients as function of incidence angle (from $i=0^{\circ}$ through $i=i_{c}$ to $i=90^{\circ}$). (10 points)
(d) Explain the plots. (10 points)

SH incidence $\left(\rho_{1}=2.5 \mathrm{~g} \cdot \mathrm{~cm}^{-3} \rho_{2}=3 \mathrm{~g} \cdot \mathrm{~cm}^{-3} \beta_{1}=3 \mathrm{~km} \cdot \mathrm{~s}^{-1} \beta_{2}=4 \mathrm{~km} \cdot \mathrm{~s}^{-1}\right.$)
P incidence $\left(\alpha=5.5 \mathrm{~km} \cdot \mathrm{~s}^{-1} \beta=3.2 \mathrm{~km} \cdot \mathrm{~s}^{-1}\right)$

SH incidence

P incidence
2. Give the Zoeppritz' equations of the $P-S_{V}$ system (P incidence) across a solid-solid interface. (20 points)

$P-S_{V}$ system (P incidence)

3. Suppose we have an incidence plane wave S_{H} as depicted in Figure below: prove that the total response has the same amplitude as that of the incidence wave. (30 points)

Free surface

