12.520 Lecture Notes 22

Fluids (continued)

Material Derivative

Laws of physics - conservation of mass, conservation of energy, etc.
Express in reference frame of material, e.g. rod

Figure 22.1
Figure by MIT OCW.

Steady state: $\quad T=T_{0} x / L ; \quad \frac{\partial T}{\partial t}=0$

Lagrangian frame: $\quad \rho c_{p} \frac{\partial T}{\partial t}=-k \nabla^{2} T+A$

Eulerian frame - material is moving. There would be a $\frac{\partial T}{\partial t}$ for the above rod moving through.

Marching band example.
Need to account for "non physical" change due to motion.
Above example: $\frac{\partial T}{\partial t}=-v \frac{\partial T}{\partial x}$ where $-v \frac{\partial T}{\partial x}$ is advection term.

Material derivative:

$$
\frac{D}{D t}=\frac{\partial}{\partial t}+\underset{\sim}{v} \cdot \nabla
$$

Heat conduction

$$
\frac{D T}{D t}=\frac{\partial T}{\partial t}+\underset{\sim}{v} \nabla T=-k \nabla^{2} T+H
$$

Conservation of Mass - Continuity Equation

Consider motion in x_{2} direction:

Figure 22.2
Figure by MIT OCW.

Sides: mass in - mass out $=-\frac{\partial}{\partial \mathrm{x}_{2}}\left(\rho v_{2}\right) d x_{2} d x_{1} d x_{3}=-\frac{\partial}{\partial \mathrm{x}_{2}}\left(\rho v_{2}\right) d V$
Front, back: mass in - mass out $=-\frac{\partial}{\partial \mathrm{x}_{1}}\left(\rho v_{1}\right) d V$
Top, bottom: mass in - mass out $=-\frac{\partial}{\partial \mathrm{x}_{3}}\left(\rho v_{3}\right) d V$

For all 3 directions: $-\frac{\partial}{\partial \mathrm{x}_{1}}\left(\rho v_{1}\right)-\frac{\partial}{\partial \mathrm{x}_{2}}\left(\rho v_{2}\right)-\frac{\partial}{\partial \mathrm{x}_{3}}\left(\rho v_{3}\right)=\frac{\partial \rho}{\partial \mathrm{t}}$

$$
\begin{gathered}
\frac{\partial \rho}{\partial \mathrm{t}}+\frac{\partial}{\partial \mathrm{x}_{\mathrm{i}}}\left(\rho v_{i}\right)=0 \\
\frac{\partial \rho}{\partial \mathrm{t}}+v_{i} \frac{\partial \rho}{\partial \mathrm{x}_{\mathrm{i}}}+\rho \frac{\partial v_{i}}{\partial \mathrm{x}_{\mathrm{i}}}=0 \\
\frac{D \rho}{\mathrm{Dt}}+\rho \frac{\partial v_{i}}{\partial \mathrm{x}_{\mathrm{i}}}=0 \quad \text { (Law of conservation of mass) }
\end{gathered}
$$

For an incompressible fluid with constant properties

$$
-\nabla p+\mu \nabla^{2} \underset{\sim}{v}+\rho \underset{\sim}{x}=\rho \frac{D \underset{\sim}{v}}{D t}
$$

or, with $v \equiv \mu / \rho$ (dynamic viscosity)

$$
-\frac{1}{\rho} \frac{\partial p}{\partial x_{i}}+v \frac{\partial^{2} v_{i}}{\partial x_{j} \partial x_{j}}+x_{i}=\frac{D v_{i}}{D t} \quad \text { (Navier-Stokes equation) }
$$

"Plane strain"

Figure 22.3
Figure by MIT OCW.
$t=0, \underset{\sim}{v}=0, \underset{\sim}{v}\left(x_{1}=0\right)=\left(0, v_{0}, 0\right)$
only have $v_{2} \neq 0$
∞ in x_{2} direction $\Rightarrow \frac{\partial}{\partial \mathrm{x}_{2}}=0$
Subtract out hydrostatic

$$
\frac{\partial v_{2}}{\partial t}=v \frac{\partial^{2} v_{2}}{\partial x_{1}^{2}}
$$

The solution becomes $v=v_{0}\left(1-e r f \frac{x_{1}}{2 \sqrt{v t}}\right)$
where $\operatorname{erf}(y)=\frac{2}{\pi} \int_{0}^{y} e^{-\xi^{2}} d \xi$.

Velocity propagates downward a characteristic depth, $x_{1}=2 \sqrt{v t}$.
Example: canoe 5 meters long,
$v_{0}=5 \mathrm{~m} / \mathrm{sec} \Rightarrow t: 1 \mathrm{sec}$
water $v: 10^{-2} \mathrm{~cm}^{2} / \mathrm{sec} \Rightarrow x_{1}: 2 \sqrt{10^{-2}}=2 \mathrm{~mm}$
A canoe will drag along about 2 mm water.

